Analysis of Machine Learning Classification Approaches for Predicting Students' Programming Aptitude

dc.contributor.author Çetinkaya, Ali
dc.contributor.author Baykan, Ömer Kaan
dc.contributor.author Kırgız, Havva
dc.date.accessioned 2023-10-02T11:16:07Z
dc.date.available 2023-10-02T11:16:07Z
dc.date.issued 2023
dc.description.abstract With the increasing prevalence and significance of computer programming, a crucial challenge that lies ahead of teachers and parents is to identify students adept at computer programming and direct them to relevant programming fields. As most studies on students' coding abilities focus on elementary, high school, and university students in developed countries, we aimed to determine the coding abilities of middle school students in Turkey. We first administered a three-part spatial test to 600 secondary school students, of whom 400 completed the survey and the 20-level Classic Maze course on Code.org. We then employed four machine learning (ML) algorithms, namely, support vector machine (SVM), decision tree, k-nearest neighbor, and quadratic discriminant to classify the coding abilities of these students using spatial test and Code.org platform data. SVM yielded the most accurate results and can thus be considered a suitable ML technique to determine the coding abilities of participants. This article promotes quality education and coding skills for workforce development and sustainable industrialization, aligned with the United Nations Sustainable Development Goals. en_US
dc.identifier.doi 10.3390/su151712917
dc.identifier.issn 2071-1050
dc.identifier.scopus 2-s2.0-85170355011
dc.identifier.uri https://doi.org/10.3390/su151712917
dc.identifier.uri https://hdl.handle.net/20.500.13091/4578
dc.language.iso en en_US
dc.publisher MDPI en_US
dc.relation.ispartof Sustainability en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject machine learning en_US
dc.subject classification en_US
dc.subject Code.org en_US
dc.subject middle school students en_US
dc.subject coding abilities en_US
dc.subject Academic-Performance en_US
dc.title Analysis of Machine Learning Classification Approaches for Predicting Students' Programming Aptitude en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional
gdc.author.scopusid 57218480231
gdc.author.scopusid 23090480800
gdc.author.scopusid 58568889700
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department KTÜN en_US
gdc.description.departmenttemp [Cetinkaya, Ali; Baykan, Omer Kaan] Konya Tech Univ, Dept Comp Engn, TR-42250 Konya, Turkiye; [Kirgiz, Havva] Konya Sci Ctr, TR-42100 Konya, Turkiye en_US
gdc.description.issue 17 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 12917
gdc.description.volume 15 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W4386221250
gdc.identifier.wos WOS:001061171600001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 8.0
gdc.oaire.influence 2.9988225E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 8.317395E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 05 social sciences
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 0503 education
gdc.openalex.collaboration National
gdc.openalex.fwci 5.21704945
gdc.openalex.normalizedpercentile 0.9
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 6
gdc.plumx.mendeley 67
gdc.plumx.newscount 1
gdc.plumx.scopuscites 6
gdc.scopus.citedcount 6
gdc.virtual.author Baykan, Ömer Kaan
gdc.wos.citedcount 3
relation.isAuthorOfPublication aea7aa1f-27e5-46d6-9fb7-317283404e6b
relation.isAuthorOfPublication.latestForDiscovery aea7aa1f-27e5-46d6-9fb7-317283404e6b

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
sustainability-15-12917.pdf
Size:
2.35 MB
Format:
Adobe Portable Document Format