Analysis of Machine Learning Classification Approaches for Predicting Students' Programming Aptitude
| dc.contributor.author | Çetinkaya, Ali | |
| dc.contributor.author | Baykan, Ömer Kaan | |
| dc.contributor.author | Kırgız, Havva | |
| dc.date.accessioned | 2023-10-02T11:16:07Z | |
| dc.date.available | 2023-10-02T11:16:07Z | |
| dc.date.issued | 2023 | |
| dc.description.abstract | With the increasing prevalence and significance of computer programming, a crucial challenge that lies ahead of teachers and parents is to identify students adept at computer programming and direct them to relevant programming fields. As most studies on students' coding abilities focus on elementary, high school, and university students in developed countries, we aimed to determine the coding abilities of middle school students in Turkey. We first administered a three-part spatial test to 600 secondary school students, of whom 400 completed the survey and the 20-level Classic Maze course on Code.org. We then employed four machine learning (ML) algorithms, namely, support vector machine (SVM), decision tree, k-nearest neighbor, and quadratic discriminant to classify the coding abilities of these students using spatial test and Code.org platform data. SVM yielded the most accurate results and can thus be considered a suitable ML technique to determine the coding abilities of participants. This article promotes quality education and coding skills for workforce development and sustainable industrialization, aligned with the United Nations Sustainable Development Goals. | en_US |
| dc.identifier.doi | 10.3390/su151712917 | |
| dc.identifier.issn | 2071-1050 | |
| dc.identifier.scopus | 2-s2.0-85170355011 | |
| dc.identifier.uri | https://doi.org/10.3390/su151712917 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.13091/4578 | |
| dc.language.iso | en | en_US |
| dc.publisher | MDPI | en_US |
| dc.relation.ispartof | Sustainability | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | machine learning | en_US |
| dc.subject | classification | en_US |
| dc.subject | Code.org | en_US |
| dc.subject | middle school students | en_US |
| dc.subject | coding abilities | en_US |
| dc.subject | Academic-Performance | en_US |
| dc.title | Analysis of Machine Learning Classification Approaches for Predicting Students' Programming Aptitude | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | … | |
| gdc.author.scopusid | 57218480231 | |
| gdc.author.scopusid | 23090480800 | |
| gdc.author.scopusid | 58568889700 | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | KTÜN | en_US |
| gdc.description.departmenttemp | [Cetinkaya, Ali; Baykan, Omer Kaan] Konya Tech Univ, Dept Comp Engn, TR-42250 Konya, Turkiye; [Kirgiz, Havva] Konya Sci Ctr, TR-42100 Konya, Turkiye | en_US |
| gdc.description.issue | 17 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q2 | |
| gdc.description.startpage | 12917 | |
| gdc.description.volume | 15 | en_US |
| gdc.description.wosquality | Q2 | |
| gdc.identifier.openalex | W4386221250 | |
| gdc.identifier.wos | WOS:001061171600001 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 8.0 | |
| gdc.oaire.influence | 2.9988225E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.popularity | 8.317395E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 05 social sciences | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.oaire.sciencefields | 0503 education | |
| gdc.openalex.collaboration | National | |
| gdc.openalex.fwci | 5.21704945 | |
| gdc.openalex.normalizedpercentile | 0.9 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 6 | |
| gdc.plumx.mendeley | 67 | |
| gdc.plumx.newscount | 1 | |
| gdc.plumx.scopuscites | 6 | |
| gdc.scopus.citedcount | 6 | |
| gdc.virtual.author | Baykan, Ömer Kaan | |
| gdc.wos.citedcount | 3 | |
| relation.isAuthorOfPublication | aea7aa1f-27e5-46d6-9fb7-317283404e6b | |
| relation.isAuthorOfPublication.latestForDiscovery | aea7aa1f-27e5-46d6-9fb7-317283404e6b |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- sustainability-15-12917.pdf
- Size:
- 2.35 MB
- Format:
- Adobe Portable Document Format
