Diagnosis of Covid-19 From Blood Parameters Using Convolutional Neural Network

No Thumbnail Available

Date

2023

Authors

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Open Access Color

Green Open Access

Yes

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Top 10%

Research Projects

Journal Issue

Abstract

Asymptomatically presenting COVID-19 complicates the detection of infected individuals. Additionally, the virus changes too many genomic variants, which increases the virus's ability to spread. Because there isn't a specific treatment for COVID-19 in a short time, the essential goal is to reduce the virulence of the disease. Blood parameters, which contain essential clinical information about infectious diseases and are easy to access, have an important place in COVID-19 detection. The convolutional neural network (CNN) architecture, which is popular in image processing, produces highly successful results for COVID-19 detection models. When the literature is examined, it is seen that COVID-19 studies with CNN are generally done using lung images. In this study, one-dimensional (1D) blood parameters data were converted into two-dimensional (2D) image data after preprocessing, and COVID-19 detection was made with CNN. The t-distributed stochastic neighbor embedding method was applied to transfer the feature vectors to the 2D plane. All data were framed with convex hull and minimum bounding rectangle algorithms to obtain image data. The image data obtained by pixel mapping was presented to the developed 3-line CNN architecture. This study proposes an effective and successful model by providing a combination of low-cost and rapidly-accessible blood parameters and CNN architecture making image data processing highly successful for COVID-19 detection. Ultimately, COVID-19 detection was made with a success rate of 94.85%. This study has brought a new perspective to COVID-19 detection studies by obtaining 2D image data from 1D COVID-19 blood parameters and using CNN.

Description

Keywords

COVID-19, Deep learning, 1D to 2D conversion, Convolutional neural network (CNN), Image processing, Algorithm, Data Analytics and Machine Learning

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q3

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
3

Source

Soft Computing

Volume

27

Issue

15

Start Page

10555

End Page

10570
PlumX Metrics
Citations

Scopus : 3

PubMed : 1

Captures

Mendeley Readers : 11

SCOPUS™ Citations

3

checked on Feb 03, 2026

Web of Science™ Citations

3

checked on Feb 03, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.9271649

Sustainable Development Goals

SDG data is not available