Effects of Training Parameters of Alexnet Architecture on Wound Image Classification

dc.contributor.author Eldem, Hüseyin
dc.contributor.author Ülker, Erkan
dc.contributor.author Işıklı, Osman Yasar
dc.date.accessioned 2023-08-03T19:00:17Z
dc.date.available 2023-08-03T19:00:17Z
dc.date.issued 2023
dc.description.abstract Deep learning is more extensively used in image analysis-based classification of wounds with an aim to facilitate the monitoring of wound prognosis in preventive treatments. In this paper, the classification success of AlexNet architecture in pressure and diabetic foot wound images is discussed. Optimizing training parameters in order to increase the success of Convolutional Neural Network (CNN) architectures is a frequently discussed problem. This paper comparatively examines the effects of optimization of the training parameters of CNN architecture on classification success. The paper examines how the optimizer algorithm, mini-batch size (MBS), maximum epoch number (ME), learning rate (LR), and LearnRateSchedule (LRS) parameters, which are among the training parameters used in combination in architectural training, perform at different values. The best results were obtained with an accuracy of 95.48% at the 10e-4 value of the LR parameter. When the changes in the evaluation metrics during the parameter optimization experiments were examined, it was seen that the LR parameter produced optimum values at 10e-4. As a result, when the Accuracy metric and standard deviations were examined, it was determined only with the LR parameter. No general conclusion could be reached regarding the other parameters. en_US
dc.description.sponsorship Scientific Research Project at Konya Technical University, Konya, Turkey [231113005] en_US
dc.description.sponsorship This study was supported by the Scientific Research Project at Konya Technical University, Konya, Turkey (No. 231113005) . en_US
dc.identifier.doi 10.18280/ts.400243
dc.identifier.issn 0765-0019
dc.identifier.issn 1958-5608
dc.identifier.scopus 2-s2.0-85162093084
dc.identifier.uri https://doi.org/10.18280/ts.400243
dc.identifier.uri https://hdl.handle.net/20.500.13091/4374
dc.language.iso en en_US
dc.publisher Int Information & Engineering Technology Assoc en_US
dc.relation.ispartof Traitement Du Signal en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject wound image classification AlexNet en_US
dc.subject parameter optimization deep learning en_US
dc.title Effects of Training Parameters of Alexnet Architecture on Wound Image Classification en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional
gdc.author.scopusid 55326495100
gdc.author.scopusid 23393979800
gdc.author.scopusid 55367909400
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department KTÜN en_US
gdc.description.departmenttemp [Eldem, Huseyin] Karamanoglu Mehmetbey Univ, Vocat Sch Tech Sci, Comp Technol Dept, TR-70100 Karaman, Turkiye; [Ulker, Erkan] Konya Tech Univ, Fac Engn & Nat Sci, Dept Comp Engn, Comp Engn Dept, TR-42250 Konya, Turkiye; [Isikli, Osman Yasar] Karaman Educ & Res Hosp, Vasc Surg Dept, TR-70100 Karaman, Turkiye en_US
gdc.description.endpage 817 en_US
gdc.description.issue 2 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 811 en_US
gdc.description.volume 40 en_US
gdc.description.wosquality Q4
gdc.identifier.openalex W4377832583
gdc.identifier.wos WOS:000996210200043
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 4.0
gdc.oaire.influence 2.9157439E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Deep Learning
gdc.oaire.keywords Parameter Optimization
gdc.oaire.keywords Wound Image Classification
gdc.oaire.keywords AlexNet
gdc.oaire.popularity 5.323408E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 1.34217497
gdc.openalex.normalizedpercentile 0.78
gdc.opencitations.count 3
gdc.plumx.mendeley 17
gdc.plumx.scopuscites 4
gdc.scopus.citedcount 4
gdc.virtual.author Ülker, Erkan
gdc.wos.citedcount 3
relation.isAuthorOfPublication ecd5c807-37b2-4c20-a42b-133bc166cbc0
relation.isAuthorOfPublication.latestForDiscovery ecd5c807-37b2-4c20-a42b-133bc166cbc0

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ts_40.02_43.pdf
Size:
1.37 MB
Format:
Adobe Portable Document Format