Classification of Physiological Disorders in Apples Using Deep Convolutional Neural Network Under Different Lighting Conditions

dc.contributor.author Büyükarıkan, Birkan
dc.contributor.author Ülker, Erkan
dc.date.accessioned 2023-05-30T20:02:23Z
dc.date.available 2023-05-30T20:02:23Z
dc.date.issued 2023
dc.description.abstract Non-destructive testing of apple fruit, an important product in the world fresh fruit trade, according to physiological disorders, can be done with a computer vision system. However, in the vision system, images may be affected by the brightness values created by different lighting conditions. For this reason, it is a necessity to use algorithms that accurately and quickly detect physiological disorders. By using a convolutional neural network (CNN), an algorithm that enables easy extraction of features from images, determining physiological disorders becomes easier. This study aims to classify the images of apples with physiological disorders obtained under different lighting conditions with CNN models. This study created a dataset (images of different light colors, angles, and distances) with some physiological disorder images. A 5-fold cross-validation method was applied to improve the generalization ability of the models, and CNN models were trained end-to-end. In addition, the Friedman hypothesis test and post-hoc Nemenyi test were performed to compare the evaluation indicators of different CNN models. The average accuracy, precision, recall, and F1-score of the Xception model were 0.996, 0.994, 0.996, and 0.998, respectively. The classification accuracy of this model is followed by the ResNet101, MobileNet, ResNet152, ResNet18, ResNet34, ResNet50, EfficientNetB0, AlexNet, VGG16, and VGG19. Finally, Xception performed well, according to Friedman/Nemenyi test results. en_US
dc.description.sponsorship Scientific Research Project at Konya Technical University, Konya, Turkey [201113006] en_US
dc.description.sponsorship This work was supported by the Scientific Research Project at Konya Technical University, Konya, Turkey (No. 201113006). en_US
dc.identifier.doi 10.1007/s11042-023-14766-7
dc.identifier.issn 1380-7501
dc.identifier.issn 1573-7721
dc.identifier.scopus 2-s2.0-85149711756
dc.identifier.uri https://doi.org/10.1007/s11042-023-14766-7
dc.identifier.uri https://hdl.handle.net/20.500.13091/3959
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof Multimedia Tools And Applications en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Convolutional neural network en_US
dc.subject Lighting en_US
dc.subject Physiological disorders in apples en_US
dc.subject Classification en_US
dc.subject Computer vision en_US
dc.subject Friedman en_US
dc.subject Nemenyi en_US
dc.subject Near-Infrared Spectroscopy en_US
dc.subject Bitter Pit en_US
dc.subject Statistical Comparisons en_US
dc.subject Quality Inspection en_US
dc.subject Computer Vision en_US
dc.subject Reflectance en_US
dc.subject Classifiers en_US
dc.subject Images en_US
dc.subject Fruits en_US
dc.title Classification of Physiological Disorders in Apples Using Deep Convolutional Neural Network Under Different Lighting Conditions en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Buyukarikan, Birkan/0000-0002-9703-9678
gdc.author.institutional
gdc.author.scopusid 56971435700
gdc.author.scopusid 23393979800
gdc.author.wosid Buyukarikan, Birkan/F-4244-2019
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department KTÜN en_US
gdc.description.departmenttemp [Buyukarikan, Birkan] Selcuk Univ, Sarayonu Vocat High Sch, Dept Comp Technol, Konya, Turkiye; [Ulker, Erkan] Konya Tech Univ, Fac Engn & Nat Sci, Dept Comp Engn, Konya, Turkiye en_US
gdc.description.endpage 32483
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 32463
gdc.description.volume 82
gdc.description.wosquality Q2
gdc.identifier.openalex W4323924596
gdc.identifier.wos WOS:000946885800002
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 3.0
gdc.oaire.influence 2.6113187E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 4.3163473E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 1.05672093
gdc.openalex.normalizedpercentile 0.87
gdc.opencitations.count 1
gdc.plumx.mendeley 11
gdc.plumx.scopuscites 3
gdc.scopus.citedcount 3
gdc.virtual.author Ülker, Erkan
gdc.wos.citedcount 3
relation.isAuthorOfPublication ecd5c807-37b2-4c20-a42b-133bc166cbc0
relation.isAuthorOfPublication.latestForDiscovery ecd5c807-37b2-4c20-a42b-133bc166cbc0

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
s11042-023-14766-7.pdf
Size:
1.48 MB
Format:
Adobe Portable Document Format