Encoder-Decoder Semantic Segmentation Models for Pressure Wound Images

dc.contributor.author Eldem, Huseyin
dc.contributor.author Ülker, Erkan
dc.contributor.author Işıklı, Osman Yasar
dc.date.accessioned 2023-03-03T13:32:23Z
dc.date.available 2023-03-03T13:32:23Z
dc.date.issued 2023
dc.description.abstract Segmentation of wound images is important for efficient wound treatment so that appropriate treatment methods can be recommended quickly. Wound measurement, is subjective for an overall assessment. The establishment of a high-performance automatic segmentation system is of great importance for wound care. The use of machine learning methods will make performing wound segmentation with high performance possible. Great success can be achieved with deep learning, which is a sub-branch of machine learning and has been used in the analysis of images recently (classification, segmentation, etc.). In this study, pressure wound segmentation was discussed with different encoder-decoder based segmentation models. All methods are implemented on the Medetec pressure wound image dataset. In the experiments, FCN, PSP, UNet, SegNet and DeepLabV3 segmentation architectures were used on a five-fold cross-validation. Performances of the models were measured in the experiments and it was demonstrated that the most successful architecture was MobileNet-UNet with 99.67% accuracy. en_US
dc.identifier.doi 10.1080/13682199.2022.2163531
dc.identifier.issn 1368-2199
dc.identifier.issn 1743-131X
dc.identifier.scopus 2-s2.0-85146679831
dc.identifier.uri https://doi.org/10.1080/13682199.2022.2163531
dc.identifier.uri https://hdl.handle.net/20.500.13091/3654
dc.language.iso en en_US
dc.publisher Taylor & Francis Ltd en_US
dc.relation.ispartof Imaging Science Journal en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Pressure wounds segmentation en_US
dc.subject encoder-decoder segmentation models en_US
dc.subject deep learning en_US
dc.subject transfer learning en_US
dc.subject Deep en_US
dc.subject Injuries en_US
dc.subject Ulcers en_US
dc.title Encoder-Decoder Semantic Segmentation Models for Pressure Wound Images en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional
gdc.author.scopusid 55326495100
gdc.author.scopusid 23393979800
gdc.author.scopusid 55988415200
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department KTÜN en_US
gdc.description.departmenttemp [Eldem, Huseyin] Karamanoglu Mehmetbey Univ, Vocat Sch Tech Sci, Comp Technol Dept, TR-70100 Karaman, Turkey; [Ulker, Erkan] Konya Tech Univ, Fac Engn & Nat Sci, Dept Comp Engn, Konya, Turkey; [Isikli, Osman Yasar] Karaman Educ & Res Hosp, Vasc Surg Dept, Karaman, Turkey en_US
gdc.description.endpage 86
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Eleman en_US
gdc.description.scopusquality Q2
gdc.description.startpage 75
gdc.description.volume 70
gdc.description.wosquality Q4
gdc.identifier.openalex W4315786105
gdc.identifier.wos WOS:000912747700001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 3.0
gdc.oaire.influence 2.5863462E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 4.014041E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0302 clinical medicine
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 2.40042656
gdc.openalex.normalizedpercentile 0.87
gdc.opencitations.count 2
gdc.plumx.mendeley 1
gdc.plumx.scopuscites 4
gdc.scopus.citedcount 4
gdc.virtual.author Ülker, Erkan
gdc.wos.citedcount 3
relation.isAuthorOfPublication ecd5c807-37b2-4c20-a42b-133bc166cbc0
relation.isAuthorOfPublication.latestForDiscovery ecd5c807-37b2-4c20-a42b-133bc166cbc0

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Encoder decoder semantic segmentation models for pressure wound images.pdf
Size:
2.26 MB
Format:
Adobe Portable Document Format