Lstm and Filter Based Comparison Analysis for Indoor Global Localization in Uavs

dc.contributor.author Yusefi, Abdullah
dc.contributor.author Durdu, Akif
dc.contributor.author Aslan, Muhammet Fatih
dc.contributor.author Sungur, Cemil
dc.date.accessioned 2021-12-13T10:41:38Z
dc.date.available 2021-12-13T10:41:38Z
dc.date.issued 2021
dc.description.abstract Deep learning (DL) based localization and Simultaneous Localization and Mapping (SLAM) has recently gained considerable attention demonstrating remarkable results. Instead of constructing hand-crafted algorithms through geometric theories, DL based solutions provide a data-driven solution to the problem. Taking advantage of large amounts of training data and computing capacity, these approaches are increasingly developing into a new field that offers accurate and robust localization systems. In this work, the problem of global localization for unmanned aerial vehicles (UAVs) is analyzed by proposing a sequential, end-to-end, and multimodal deep neural network based monocular visual-inertial localization framework. More specifically, the proposed neural network architecture is three-fold; a visual feature extractor convNet network, a small IMU integrator bi-directional long short-term memory (LSTM), and a global pose regressor bi-directional LSTM network for pose estimation. In addition, by fusing the traditional IMU filtering methods instead of LSTM with the convNet, a more time-efficient deep pose estimation framework is presented. It is worth pointing out that the focus in this study is to evaluate the precision and efficiency of visual-inertial (VI) based localization approaches concerning indoor scenarios. The proposed deep global localization is compared with the various state-of-the-art algorithms on indoor UAV datasets, simulation environments and real-world drone experiments in terms of accuracy and time-efficiency. In addition, the comparison of IMU-LSTM and IMU-Filter based pose estimators is also provided by a detailed analysis. Experimental results show that the proposed filter-based approach combined with a DL approach has promising performance in terms of accuracy and time efficiency in indoor localization of UAVs. en_US
dc.identifier.doi 10.1109/ACCESS.2021.3049896
dc.identifier.issn 2169-3536
dc.identifier.scopus 2-s2.0-85099568894
dc.identifier.uri https://doi.org/10.1109/ACCESS.2021.3049896
dc.identifier.uri https://hdl.handle.net/20.500.13091/1612
dc.language.iso en en_US
dc.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en_US
dc.relation.ispartof IEEE ACCESS en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Location awareness en_US
dc.subject Cameras en_US
dc.subject Feature extraction en_US
dc.subject Visualization en_US
dc.subject Pose estimation en_US
dc.subject Simultaneous localization and mapping en_US
dc.subject Robot vision systems en_US
dc.subject Global localization en_US
dc.subject pose estimation en_US
dc.subject recurrent convolutional neural networks en_US
dc.subject bi-directional LSTM en_US
dc.subject VIO en_US
dc.title Lstm and Filter Based Comparison Analysis for Indoor Global Localization in Uavs en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Durdu, Akif/0000-0002-5611-2322
gdc.author.scopusid 57221601191
gdc.author.scopusid 55364612200
gdc.author.scopusid 57205362915
gdc.author.scopusid 24492409100
gdc.author.wosid Durdu, Akif/AAQ-4344-2020
gdc.author.wosid cao, xiaoxiang/AAR-9291-2021
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.endpage 10069 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 10054 en_US
gdc.description.volume 9 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W3119526483
gdc.identifier.wos WOS:000609804600001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 22.0
gdc.oaire.influence 3.6384007E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Pose Estimation
gdc.oaire.keywords Bi-Directional LSTM
gdc.oaire.keywords Global localization
gdc.oaire.keywords VIO
gdc.oaire.keywords Global Localization
gdc.oaire.keywords bi-directional LSTM
gdc.oaire.keywords Electrical engineering. Electronics. Nuclear engineering
gdc.oaire.keywords Recurrent Convolutional Neural Networks
gdc.oaire.keywords pose estimation
gdc.oaire.keywords recurrent convolutional neural networks
gdc.oaire.keywords TK1-9971
gdc.oaire.popularity 2.0328322E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0209 industrial biotechnology
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration International
gdc.openalex.fwci 8.6025406
gdc.openalex.normalizedpercentile 0.98
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 25
gdc.plumx.crossrefcites 1
gdc.plumx.mendeley 41
gdc.plumx.scopuscites 33
gdc.scopus.citedcount 33
gdc.virtual.author Cengiz, Salih
gdc.virtual.author Sungur, Cemil
gdc.virtual.author Çeper, Sena
gdc.virtual.author Durdu, Akif
gdc.wos.citedcount 30
relation.isAuthorOfPublication c0e47850-bb5e-4d98-8503-5140674e2026
relation.isAuthorOfPublication 5afbc8e5-34e4-41c7-9e7b-ee7412206e11
relation.isAuthorOfPublication ab01cb80-8e6f-42cd-95c0-27977a4e3ac8
relation.isAuthorOfPublication 230d3f36-663e-4fae-8cdd-46940c9bafea
relation.isAuthorOfPublication.latestForDiscovery c0e47850-bb5e-4d98-8503-5140674e2026

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
akif-durdu.pdf
Size:
2.42 MB
Format:
Adobe Portable Document Format