Lstm and Filter Based Comparison Analysis for Indoor Global Localization in Uavs
| dc.contributor.author | Yusefi, Abdullah | |
| dc.contributor.author | Durdu, Akif | |
| dc.contributor.author | Aslan, Muhammet Fatih | |
| dc.contributor.author | Sungur, Cemil | |
| dc.date.accessioned | 2021-12-13T10:41:38Z | |
| dc.date.available | 2021-12-13T10:41:38Z | |
| dc.date.issued | 2021 | |
| dc.description.abstract | Deep learning (DL) based localization and Simultaneous Localization and Mapping (SLAM) has recently gained considerable attention demonstrating remarkable results. Instead of constructing hand-crafted algorithms through geometric theories, DL based solutions provide a data-driven solution to the problem. Taking advantage of large amounts of training data and computing capacity, these approaches are increasingly developing into a new field that offers accurate and robust localization systems. In this work, the problem of global localization for unmanned aerial vehicles (UAVs) is analyzed by proposing a sequential, end-to-end, and multimodal deep neural network based monocular visual-inertial localization framework. More specifically, the proposed neural network architecture is three-fold; a visual feature extractor convNet network, a small IMU integrator bi-directional long short-term memory (LSTM), and a global pose regressor bi-directional LSTM network for pose estimation. In addition, by fusing the traditional IMU filtering methods instead of LSTM with the convNet, a more time-efficient deep pose estimation framework is presented. It is worth pointing out that the focus in this study is to evaluate the precision and efficiency of visual-inertial (VI) based localization approaches concerning indoor scenarios. The proposed deep global localization is compared with the various state-of-the-art algorithms on indoor UAV datasets, simulation environments and real-world drone experiments in terms of accuracy and time-efficiency. In addition, the comparison of IMU-LSTM and IMU-Filter based pose estimators is also provided by a detailed analysis. Experimental results show that the proposed filter-based approach combined with a DL approach has promising performance in terms of accuracy and time efficiency in indoor localization of UAVs. | en_US |
| dc.identifier.doi | 10.1109/ACCESS.2021.3049896 | |
| dc.identifier.issn | 2169-3536 | |
| dc.identifier.scopus | 2-s2.0-85099568894 | |
| dc.identifier.uri | https://doi.org/10.1109/ACCESS.2021.3049896 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.13091/1612 | |
| dc.language.iso | en | en_US |
| dc.publisher | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC | en_US |
| dc.relation.ispartof | IEEE ACCESS | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Location awareness | en_US |
| dc.subject | Cameras | en_US |
| dc.subject | Feature extraction | en_US |
| dc.subject | Visualization | en_US |
| dc.subject | Pose estimation | en_US |
| dc.subject | Simultaneous localization and mapping | en_US |
| dc.subject | Robot vision systems | en_US |
| dc.subject | Global localization | en_US |
| dc.subject | pose estimation | en_US |
| dc.subject | recurrent convolutional neural networks | en_US |
| dc.subject | bi-directional LSTM | en_US |
| dc.subject | VIO | en_US |
| dc.title | Lstm and Filter Based Comparison Analysis for Indoor Global Localization in Uavs | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Durdu, Akif/0000-0002-5611-2322 | |
| gdc.author.scopusid | 57221601191 | |
| gdc.author.scopusid | 55364612200 | |
| gdc.author.scopusid | 57205362915 | |
| gdc.author.scopusid | 24492409100 | |
| gdc.author.wosid | Durdu, Akif/AAQ-4344-2020 | |
| gdc.author.wosid | cao, xiaoxiang/AAR-9291-2021 | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C4 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü | en_US |
| gdc.description.endpage | 10069 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 10054 | en_US |
| gdc.description.volume | 9 | en_US |
| gdc.description.wosquality | Q2 | |
| gdc.identifier.openalex | W3119526483 | |
| gdc.identifier.wos | WOS:000609804600001 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 22.0 | |
| gdc.oaire.influence | 3.6384007E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | Pose Estimation | |
| gdc.oaire.keywords | Bi-Directional LSTM | |
| gdc.oaire.keywords | Global localization | |
| gdc.oaire.keywords | VIO | |
| gdc.oaire.keywords | Global Localization | |
| gdc.oaire.keywords | bi-directional LSTM | |
| gdc.oaire.keywords | Electrical engineering. Electronics. Nuclear engineering | |
| gdc.oaire.keywords | Recurrent Convolutional Neural Networks | |
| gdc.oaire.keywords | pose estimation | |
| gdc.oaire.keywords | recurrent convolutional neural networks | |
| gdc.oaire.keywords | TK1-9971 | |
| gdc.oaire.popularity | 2.0328322E-8 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0209 industrial biotechnology | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 8.6025406 | |
| gdc.openalex.normalizedpercentile | 0.98 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 25 | |
| gdc.plumx.crossrefcites | 1 | |
| gdc.plumx.mendeley | 41 | |
| gdc.plumx.scopuscites | 33 | |
| gdc.scopus.citedcount | 33 | |
| gdc.virtual.author | Cengiz, Salih | |
| gdc.virtual.author | Sungur, Cemil | |
| gdc.virtual.author | Çeper, Sena | |
| gdc.virtual.author | Durdu, Akif | |
| gdc.wos.citedcount | 30 | |
| relation.isAuthorOfPublication | c0e47850-bb5e-4d98-8503-5140674e2026 | |
| relation.isAuthorOfPublication | 5afbc8e5-34e4-41c7-9e7b-ee7412206e11 | |
| relation.isAuthorOfPublication | ab01cb80-8e6f-42cd-95c0-27977a4e3ac8 | |
| relation.isAuthorOfPublication | 230d3f36-663e-4fae-8cdd-46940c9bafea | |
| relation.isAuthorOfPublication.latestForDiscovery | c0e47850-bb5e-4d98-8503-5140674e2026 |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- akif-durdu.pdf
- Size:
- 2.42 MB
- Format:
- Adobe Portable Document Format
