Utilization of in Situ Fbrm and Pvm Probes To Analyze the Influences of Monopropylene Glycol and Oleic Acid as Novel Additives on the Properties of Boric Acid Crystals

No Thumbnail Available

Date

2020

Journal Title

Journal ISSN

Volume Title

Publisher

AMER CHEMICAL SOC

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Top 10%
Influence
Average
Popularity
Top 10%

Research Projects

Journal Issue

Abstract

The aim of this study was to determine the influences of monopropylene glycol (MPG) and oleic acid (OA) as novel additives on the chord length distribution (CLD) and modification of the shape of boric acid crystals in real time with the use of in situ focused beam reflectance measurement (FBRM) and particle vision and measurement (PVM) probes, which were positioned on a continuous mixed-suspension mixed-product removal (CMSMPR) crystallizer at a steady-state value. In this context, the FBRM probe was used to monitor CLD, which is expressed as the cumulative undersize square-weight percentage distribution of boric acid crystals. CLD is statistically proportional to crystal size distribution. The shapes of the boric acid crystals were viewed in real time with an in situ PVM probe. In addition, a scanning electron microscope (SEM) and an optical microscope were used to characterize the shapes of the boric acid crystals produced in the CMSMPR crystallizer. The chemical structures of the boric acid crystals were characterized by Fourier transform infrared (FT-IR) analysis. The population density of the nuclei, the nucleation rate, and the growth rate of the boric acid crystals were also calculated. As a result, it was proved that industrial problems encountered in the production of boric acid crystals by the crystallization process were eliminated especially in the presence of 100 ppm OA and 50 ppm MPG additives by FBRM, PVM, SEM analysis, and number density theory application. This study revealed novel insights into the modification of the shape of boric acid crystals and into the control of CLD in the presence of OA and MPG using in situ FBRM and PVM probes.

Description

Keywords

Beam Reflectance Measurement, Crystallization Kinetics, Particle-Size, Growth, Shape, Time, Dissolution, Impurities, Model, Systems

Turkish CoHE Thesis Center URL

Fields of Science

02 engineering and technology, 0210 nano-technology, 01 natural sciences, 0104 chemical sciences

Citation

WoS Q

Q2

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
9

Source

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH

Volume

59

Issue

19

Start Page

9198

End Page

9206
PlumX Metrics
Citations

CrossRef : 6

Scopus : 11

Captures

Mendeley Readers : 17

SCOPUS™ Citations

11

checked on Feb 03, 2026

Web of Science™ Citations

9

checked on Feb 03, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.60317058

Sustainable Development Goals

SDG data is not available