A New Deep Learning Pipeline To Detect Covid-19 on Chest X-Ray Images Using Local Binary Pattern, Dual Tree Complex Wavelet Transform and Convolutional Neural Networks
No Thumbnail Available
Date
2021
Authors
Ceylan, Murat
Journal Title
Journal ISSN
Volume Title
Publisher
SPRINGER
Open Access Color
HYBRID
Green Open Access
Yes
OpenAIRE Downloads
OpenAIRE Views
Publicly Funded
No
Abstract
In this study, which aims at early diagnosis of Covid-19 disease using X-ray images, the deep-learning approach, a state-of-the-art artificial intelligence method, was used, and automatic classification of images was performed using convolutional neural networks (CNN). In the first training-test data set used in the study, there were 230 X-ray images, of which 150 were Covid-19 and 80 were non-Covid-19, while in the second training-test data set there were 476 X-ray images, of which 150 were Covid-19 and 326 were non-Covid-19. Thus, classification results have been provided for two data sets, containing predominantly Covid-19 images and predominantly non-Covid-19 images, respectively. In the study, a 23-layer CNN architecture and a 54-layer CNN architecture were developed. Within the scope of the study, the results were obtained using chest X-ray images directly in the training-test procedures and the sub-band images obtained by applying dual tree complex wavelet transform (DT-CWT) to the above-mentioned images. The same experiments were repeated using images obtained by applying local binary pattern (LBP) to the chest X-ray images. Within the scope of the study, four new result generation pipeline algorithms having been put forward additionally, it was ensured that the experimental results were combined and the success of the study was improved. In the experiments carried out in this study, the training sessions were carried out using the k-fold cross validation method. Here the k value was chosen as 23 for the first and second training-test data sets. Considering the average highest results of the experiments performed within the scope of the study, the values of sensitivity, specificity, accuracy, F-1 score, and area under the receiver operating characteristic curve (AUC) for the first training-test data set were 0,9947, 0,9800, 0,9843, 0,9881 and 0,9990 respectively; while for the second training-test data set, they were 0,9920, 0,9939, 0,9891, 0,9828 and 0,9991; respectively. Within the scope of the study, finally, all the images were combined and the training and testing processes were repeated for a total of 556 X-ray images comprising 150 Covid-19 images and 406 non-Covid-19 images, by applying 2-fold cross. In this context, the average highest values of sensitivity, specificity, accuracy, F-1 score, and AUC for this last training-test data set were found to be 0,9760, 1,0000, 0,9906, 0,9823 and 0,9997; respectively.
Description
ORCID
Keywords
Covid-19, Corona 2019, Convolutional neural networks (CNN), Deep learning, Dual tree complex wavelet transform (DT-CWT), Local binary pattern (LBP), Chest X-ray classification, CORONAVIRUS, Artificial Intelligence, Article
Turkish CoHE Thesis Center URL
Fields of Science
03 medical and health sciences, 0302 clinical medicine, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology
Citation
WoS Q
Q2
Scopus Q
Q1

OpenCitations Citation Count
21
Source
APPLIED INTELLIGENCE
Volume
51
Issue
5
Start Page
2740
End Page
2763
PlumX Metrics
Citations
CrossRef : 2
Scopus : 31
PubMed : 11
Captures
Mendeley Readers : 84
SCOPUS™ Citations
31
checked on Feb 03, 2026
Web of Science™ Citations
23
checked on Feb 03, 2026
Google Scholar™


