Şehir İçi Trafik Sinyal Ağının Takviyeli Öğrenme Algoritmaları ve Nesnelerin İnterneti Tabanlı Kontrolü
No Thumbnail Available
Files
Date
2021
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Konya Teknik Üniversitesi
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Uyarlanabilir trafik sinyal kontrolü, sinyal süresini trafiğin durumuna göre ayarlayan ve trafiği gerçek zamanlı olarak yöneten zorlu bir konudur. Klasik trafik sinyal kontrol sistemlerinin performansı, uygun sinyal planlamasını yapmak için yeterli değildir. Bu tez çalışmasında trafikteki gecikmeyi azaltmak için nesnelerin interneti tabanlı üç katmanlı bir kontrol yöntemi önerilmektedir. Önerilen yaklaşım ile her bir katmanda optimizasyon işlemi gerçekleştirilmektedir. En alt katman olan kenar bilişim katmanı, gerçek zamanlı ve yerel bir optimizasyon sağlamaktadır. Orta katman olan sis bilişim katmanı, gerçek zamanlı ve küresel bir optimizasyon işlemi gerçekleştirmektedir. En üst katman olan bulut bilişim ise alt katmanlardan gelen veriler çevrimdışı olarak değerlendirilmekte ve alttaki iki katmanın performansını arttıracak parametreler araştırılmaktadır. Ayrıca hem izole kavşakta hem de trafik ağında kullanılmak üzere yenilikçi bir yaklaşım önerilmektedir. Literatürdeki yöntemler araçların yalnızca kırmızı sinyal fazından dolayı beklemesinden kaynaklanan gecikme süresini minimize etmeye çalışmaktadır. Oysa kavşaklarda gecikmenin araçların yavaşlaması, hızlanması ve beklemesi olmak üzere üç farklı nedeni vardır. Bu çalışmada üç farklı gecikme türünün de minimize edilmesi hedeflenmiştir. Hızlanma ve yavaşlamadan kaynaklı gecikmeyi azaltmak için uygulanan kavşak bilgisinin yanı sıra bitişik kavşakların verilerini de girdi olarak kullanan bir kontrol önerilmiştir. Bu çalışmada yöntem geliştirmek ve geliştirilen yöntemlerin performanslarını değerlendirmek için SUMO trafik simülatörü kullanılmıştır. Hem izole bir kavşakta hem de çoklu trafik sinyallerinin oluşturduğu trafik ağlarında uygulanabilir bir mimari tasarlanmıştır. Böylece literatüre ve akıllı trafik kontrol sistemlerinin gelişimine büyük bir katkı sağlamak amaçlanmıştır.
Adaptive traffic signal control is a challenging issue that adjusts the signal duration according to the traffic situation and manages the traffic in real-time. The performance of classical traffic signal control approaches is not sufficient to find the appropriate signal planning. In this thesis, a three-layer control method based on the Internet of Things is proposed to reduce the delay in traffic. With the proposed approach, optimization is performed at each layer. The bottom layer, the edge computing layer, provides real-time and local optimization. The middle layer, the fog computing layer, performs a real-time and global optimization process. In cloud computing, which is the top layer, the data from the lower layers are evaluated offline and parameters that will increase the performance of the lower two layers are investigated. In addition, an innovative approach is proposed to be used both in isolated intersections and in the traffic network. The methods in the literature only try to minimize the delay at intersections caused by vehicles waiting due to the red signal phase. There are three different reasons for delay at intersections: vehicles slowing down, accelerating and waiting. In this study, three different types of delay were also investigated. Proposed control uses not only the applied intersection information but also use the adjacent intersection data as an input. In this study, the SUMO traffic simulator was used for performance evaluation and method improvements. In addition, a model has been developed in which the internet of things, deep learning and reinforcement learning algorithms are used together. An architecture that can be applied both in an isolated intersection and in traffic networks formed by multiple traffic signals is designed, and it is aimed to make a great contribution to the literature and the development of intelligent traffic control system.
Adaptive traffic signal control is a challenging issue that adjusts the signal duration according to the traffic situation and manages the traffic in real-time. The performance of classical traffic signal control approaches is not sufficient to find the appropriate signal planning. In this thesis, a three-layer control method based on the Internet of Things is proposed to reduce the delay in traffic. With the proposed approach, optimization is performed at each layer. The bottom layer, the edge computing layer, provides real-time and local optimization. The middle layer, the fog computing layer, performs a real-time and global optimization process. In cloud computing, which is the top layer, the data from the lower layers are evaluated offline and parameters that will increase the performance of the lower two layers are investigated. In addition, an innovative approach is proposed to be used both in isolated intersections and in the traffic network. The methods in the literature only try to minimize the delay at intersections caused by vehicles waiting due to the red signal phase. There are three different reasons for delay at intersections: vehicles slowing down, accelerating and waiting. In this study, three different types of delay were also investigated. Proposed control uses not only the applied intersection information but also use the adjacent intersection data as an input. In this study, the SUMO traffic simulator was used for performance evaluation and method improvements. In addition, a model has been developed in which the internet of things, deep learning and reinforcement learning algorithms are used together. An architecture that can be applied both in an isolated intersection and in traffic networks formed by multiple traffic signals is designed, and it is aimed to make a great contribution to the literature and the development of intelligent traffic control system.
Description
Keywords
Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
Turkish CoHE Thesis Center URL
Fields of Science
Citation
WoS Q
N/A
Scopus Q
N/A
Source
Volume
Issue
Start Page
1
End Page
100
Collections
Downloads
2
checked on Feb 03, 2026
Google Scholar™
Sustainable Development Goals
2
ZERO HUNGER

3
GOOD HEALTH AND WELL-BEING

4
QUALITY EDUCATION

6
CLEAN WATER AND SANITATION

8
DECENT WORK AND ECONOMIC GROWTH

9
INDUSTRY, INNOVATION AND INFRASTRUCTURE

11
SUSTAINABLE CITIES AND COMMUNITIES

12
RESPONSIBLE CONSUMPTION AND PRODUCTION

14
LIFE BELOW WATER

15
LIFE ON LAND

