Sepiolite Enhances Biomineralization Activity of the Cementoblasts

No Thumbnail Available

Date

2020

Authors

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

GOLD

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Average

Research Projects

Journal Issue

Abstract

Aim: The inductive potentials of graft materials are important for regenerative therapies. Thus, this study was conducted using cementoblasts (OCCM-30) tooth root lining cells to determine whether sepiolite affected proliferation, mRNA expressions of genes associated with cementum/bone and biomineralization. Materials and Methods: The media containing released components of sepiolite (100 mg/ml ratio; waited 72 hrs in 5%FBS containing media) were used for cementoblast’s treatments. Proliferation of the cells was evaluated using a real-time cell analyzer (RTCA) for 170 hrs. After total RNA isolation on days 3 and 6, cDNA synthesis was performed. Bone sialoprotein (BSP), osteocalcin (OCN), collagen type I (COL-I), runt-related transcription factor 2 (Runx2), and alkaline phosphatase (ALP) transcripts were examined employing quantitative RT-PCR. Biomineralization of the cementoblasts was evaluated on day 8 via von Kossa staining. Results: Sepiolite decreased proliferation of the cementoblasts when compared to untreated control group. While there was no change for BSP mRNA expression for both time points, sepiolite up-regulated OCN, Runx2, COL-I and ALP mRNA expressions (p <0.01) on days 3 and 6 when compared to control. Sepiolite stimulated mineralized nodule formation of the cementoblasts when compared to mineralization media group (positive control). Conclusion: The findings of this study demonstrated that sepiolite enhances the functions of the cementoblasts involving new cementum formation which is critical for periodontal regeneration. Results suggested that sepiolite has potential as a graft material in dentistry and medicine.

Description

Keywords

Sepiolite, Cementoblasts, Mineralized Tissue, Periodontal Regeneration, Cementum

Turkish CoHE Thesis Center URL

Fields of Science

0301 basic medicine, 0303 health sciences, 03 medical and health sciences

Citation

WoS Q

N/A

Scopus Q

N/A
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

American Journal of Biomedical Science & Research

Volume

9

Issue

6

Start Page

442

End Page

446
Downloads

1

checked on Feb 03, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.0

Sustainable Development Goals

SDG data could not be loaded because of an error. Please refresh the page or try again later.