The Role of Mineralogical and Textural Complexity in the Damage Evolution of Brittle Rocks

No Thumbnail Available

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Nature Portfolio

Open Access Color

HYBRID

Green Open Access

Yes

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Top 10%
Influence
Average
Popularity
Top 10%

Research Projects

Journal Issue

Abstract

In brittle rocks, deformation is characterized by the initiation and propagation of cracks at both microscale and mesoscale levels. This study explores how rock texture influences the evolution of cracking networks and progressive rock damage results under uniaxial compression. 3D discrete analyses were employed to identify the critical stresses of three different rock types. Thin sections were prepared from uniaxially loaded core samples at these stresses and crack patterns were captured under a polarizing microscope. The fractal box dimension method was used to quantitatively analyze the crack patterns for each rock type at each stress level. The novelty of this research is revealing the relationship between the development of microcrack patterns and textural properties such as mineral orientation/distribution, interlocking, crystal cleavage/hardness, and the groundmass. Results show that the cracking tendency varies with rock type at each critical stress level. Specifically, diabase exhibited the highest crack intensity, attributed to the interlocking of hard plagioclase and pyroxene crystals. Furthermore, the cleavages in pyroxenes make diabase particularly susceptible to cracking, especially when they are oriented parallel or semi-parallel to the applied load. These findings highlight that rock texture is a crucial factor influencing microcrack development, which should be considered in rock engineering applications.

Description

Keywords

Rock Damage, Rock Texture, Cracking, Discrete Element Method, Fractal Dimension, Cracking, Science, Q, R, Rock texture, Article, Discrete element method, Medicine, Rock damage, Fractal dimension

Turkish CoHE Thesis Center URL

Fields of Science

0211 other engineering and technologies, 02 engineering and technology, 01 natural sciences, 0105 earth and related environmental sciences

Citation

WoS Q

Q1

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

Scientific Reports

Volume

14

Issue

1

Start Page

End Page

PlumX Metrics
Citations

Scopus : 7

Captures

Mendeley Readers : 3

SCOPUS™ Citations

5

checked on Feb 03, 2026

Web of Science™ Citations

6

checked on Feb 03, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
2.99898152

Sustainable Development Goals