Dissimilarity Weighting for Graph-Based Point Cloud Segmentation Using Local Surface Gradients

dc.contributor.author Sağlam Ali
dc.contributor.author Makineci Hasan Bilgehan
dc.contributor.author Baykan Ömer Kaan
dc.contributor.author Baykan Nurdan
dc.date.accessioned 2024-12-02T19:25:55Z
dc.date.available 2024-12-02T19:25:55Z
dc.date.issued 2020
dc.description.abstract Processing of 3D point cloud data is seen as a problem due to the difficulties of processing millions of unstructured points. The point cloud segmentation process is a crucial pre-classification stage such that it reduces the high processing time required to extract meaningful information from raw data and produces some distinctive features for the classification stage. Local surface inclinations of objects are the most effective features of 3D point clouds to provide meaningful information about the objects. Sampling the points into sub-volumes (voxels) is a technique commonly used in the literature to obtain the required neighboring point groups to calculate local surface directions (with normal vectors). The graph-based segmentation approaches are widely used for the surface segmentation using the attributes of the local surface orientations and continuities. In this study, only two geometrical primitives which are normal vectors and barycenters of point groups are used to weight the connections between the adjacent voxels (vertices). The defined 14 possible dissimilarity calculations of three angular values getting from the primitives are experimented and evaluated on five sample datasets that have reference data for segmentation. Finally, the results of the measures are compared in terms of accuracy and F1 score. According to the results, the weight measure W7 (seventh calculation) gives 0.8026 accuracy and 0.7305 F1 score with higher standard deviations, while the original weight measure (W8) of the segmentation method gives 0.7890 accuracy and 0.6774 F1 score with lower standard deviations. en_US
dc.description.sponsorship TÜBİTAK 119E012 en_US
dc.description.version Hakemli
dc.format.medium Basılı+Elektronik
dc.identifier 6636961
dc.identifier.doi https://doi.org/10.18100/ijamec.802893
dc.identifier.issn 2147-8228
dc.identifier.uri http://dx.doi.org/10.18100/ijamec.802893
dc.identifier.uri https://hdl.handle.net/20.500.13091/8832
dc.language.iso en en_US
dc.publisher Plusbase Academy en_US
dc.relation OAJI, CiteFactor en_US
dc.relation.ispartof International Journal of Applied Mathematics, Electronics and Computers en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Graph-based segmentation en_US
dc.subject Normal vector en_US
dc.subject Point cloud segmentation en_US
dc.subject Surface gradients en_US
dc.subject Weighting en_US
dc.title Dissimilarity Weighting for Graph-Based Point Cloud Segmentation Using Local Surface Gradients en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id 0000-0003-3627-5826 en_US
gdc.author.id 0000-0002-4289-8889 en_US
gdc.author.institutional Makineci, Hasan Bilgehan en_US
gdc.author.institutional Baykan, Nurdan en_US
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
gdc.description.endpage 2022 en_US
gdc.description.issue 4 en_US
gdc.description.publicationcategory Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 214 en_US
gdc.description.volume 8 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W3107180823
gdc.openalex.collaboration National
gdc.openalex.fwci 0.18672288
gdc.openalex.normalizedpercentile 0.49
gdc.opencitations.count 0
gdc.publishedmonth December
gdc.virtual.author Makineci, Hasan Bilgehan
gdc.virtual.author Baykan, Nurdan
gdc.virtual.author Sağlam, Ali
relation.isAuthorOfPublication e9b325c4-ab4f-4305-bf8d-b7f4690879db
relation.isAuthorOfPublication 81dff1ca-db16-4103-b9cb-612ae1600b38
relation.isAuthorOfPublication 45ef6a25-79a1-4196-a4bf-92a1c2f56cea
relation.isAuthorOfPublication.latestForDiscovery e9b325c4-ab4f-4305-bf8d-b7f4690879db

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
10.18100-ijamec.802893-1319645.pdf
Size:
741.09 KB
Format:
Adobe Portable Document Format
Description: