Ultrahigh Hardness in Y2o3 Dispersed Ferrous Multicomponent Nanocomposites
No Thumbnail Available
Date
2021
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
ELSEVIER
Open Access Color
Green Open Access
No
OpenAIRE Downloads
OpenAIRE Views
Publicly Funded
No
Abstract
Oxide dispersion strengthened Fe-based steels are one of the candidate materials for applications in future nu-clear reactors, an operation that needs superior mechanical properties and long-term microstructural stability at elevated temperatures. The effects of milling time on the hardness of nano-Y2O3 dispersed [Fe:(Cr-Mo-W-Ni-Nb-V)] nanocomposites were studied. The nanostructure, microstructure and crystallographic structure of the nanocomposites were evaluated using scanning electron microscopy (SEM), particle size analysis, X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HR-TEM) and energy dispersive spectroscopy (EDS). The nanocomposites' hardness was assessed by Vickers microhardness (HV). Milling up to 6 h yielded 200 textured plate-like particles of 200 nm thickness and 117 mu m mean particle size due to particle-particle welding. Milling for 24 h resulted in a bimodal particle size distribution of 6 mu m mean particle size due to strain hardening induced particle fracture. X-ray crystallite size of 24 h milled powder was 30 nm, corresponding to a dislocation density of 1.30 x 10(15) /m(2). Peak shift of (110) reflection with increasing milling time indicated that alpha-Fe matrix was under a compressive state of stress. Compositional fluctuations of alloying elements in the alpha-Fe matrix was detected even in 24 h milled powder by x-ray diffraction. Per TEM, uniformly dispersed similar to 20 nm Y2O3 particles of similar to 10 nm mean separation form an incoherent interface with the alpha-Fe matrix. The Vickers hardness of the nanocomposite increased from 185 to 537-a similar to 300% after 24 h of milling. Such colossal increase in hardness was attributed to concurrent size effects associated with fracture, surface effects, solid solution strengthening in multicomponent alloys, and the Orowan mechanism.
Description
Keywords
Nanocomposites, Mechanical Alloying, Hardness, Nanoparticle Strengthening, Residual Stresses, Finite Size Effects, Process-Control Agent, High Entropy Alloys, Mechanical-Properties, Ferritic Steel, Annealing Temperature, Oxide Particles, Ods, Microstructure, Evolution, Powders
Turkish CoHE Thesis Center URL
Fields of Science
0203 mechanical engineering, 02 engineering and technology, 0210 nano-technology
Citation
WoS Q
Q2
Scopus Q
Q2

OpenCitations Citation Count
13
Source
MATERIALS TODAY COMMUNICATIONS
Volume
28
Issue
Start Page
102637
End Page
PlumX Metrics
Citations
CrossRef : 12
Scopus : 16
Captures
Mendeley Readers : 5
SCOPUS™ Citations
16
checked on Feb 03, 2026
Web of Science™ Citations
16
checked on Feb 03, 2026
Google Scholar™


