Dye-Sensitized Sepiolite Clay as Natural Scaffolds for Visible Light Driven Photocatalytic Hydrogen Evolution

No Thumbnail Available

Date

2025

Journal Title

Journal ISSN

Volume Title

Publisher

Pergamon-Elsevier Science Ltd

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Average

Research Projects

Journal Issue

Abstract

Natural clay minerals are increasingly used as superior support materials for various photocatalysts due to their excellent adsorption capacity, negative surface charge, suitable thermal/chemical stability, large specific surface area, and strong surface reactivity, resulting in low agglomeration and suppression of charge recombination. However, they are still insufficient for photocatalysis due to their low efficiency. Therefore, sensitization of clay minerals with dyes to improve the efficiency and specificity of catalysts is considered a promising route for photocatalytic applications. In this work, the effect of dye sensitization on visible light-driven photocatalytic water splitting of microfibrous sepiolite scaffolds as natural photocatalyst supports was investigated for the first time by using various xanthene dyes (eosin Y, rhodamine B and eryhtrosine B (ErB)) and triethanolamine as photosensitizers and sacrificial agents, respectively, in the absence and presence of platinum as a co-catalyst. The clay/dye system was characterized using various techniques such as X-ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscopy and energy dispersive X-rays. Sep/ErB photocatalysts produced the highest amount of hydrogen among the other Sep/dye scaffold systems because they act as an effective matrix by preventing nanoparticle aggregation and promoting electron transfer due to their excellent crystal structures and physicochemical properties.

Description

Keywords

Dye-Sensitized Photocatalyst, Clay, Photocatalytic Hydrogen Evolution, Scaffold, Sepiolite, Water Splitting

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q1

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

International Journal of Hydrogen Energy

Volume

140

Issue

Start Page

980

End Page

987
PlumX Metrics
Citations

CrossRef : 1

Scopus : 5

Captures

Mendeley Readers : 7

SCOPUS™ Citations

4

checked on Feb 03, 2026

Web of Science™ Citations

2

checked on Feb 03, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.55073194

Sustainable Development Goals

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo