Üç Fazlı Kuru Tip Transformatör Verimliliği İçin Meta Sezgisel Algoritma Tabanlı Yaklaşımlar
No Thumbnail Available
Date
2021
Journal Title
Journal ISSN
Volume Title
Publisher
Konya Technical University
Open Access Color
GOLD
Green Open Access
Yes
OpenAIRE Downloads
OpenAIRE Views
Publicly Funded
No
Abstract
kabul edilir. Gerilim ve akım seviyelerini ters orantılı olarak değiştirme yeteneği, iletken kayıplarının azaltılmasına yardımcı olur. Bununla birlikte, günümüzün daha önemli verimlilik işaretlerine yönelik katı gereksinimleri, bir güç sistemindeki bireysel bileşenlerin verimliliğine dikkat çekiyor. Bu nedenle, temel işlevlerinden ödün vermeden transformatörlerin verimliliğini en üst düzeye çıkarmak için büyük çaba sarf edilmektedir. Bu karmaşık bir sorundur ve gelişmiş tasarım araçlarının kullanılmasını gerektirir. Son yıllarda geliştirilen meta-sezgisel yöntemler, tasarım süresinde tasarruf ve optimum çözümü bulmada büyük başarı sağladıklarından elektrik mühendisliğinde kullanılmaktadır. Bu çalışmada sırasıyla Parçacık Sürü Optimizasyonu (PSO), Benzetimli Tavlama (SA) ve Ağaç Tohum Algoritması (TSA) yöntemlerini kullandık. Amaç, üç fazlı kuru tip transformatörler için bir tasarım metodolojisi geliştirmek ve verimliliklerini en üst düzeye çıkarmaktır. Üç algoritmanın sonuçları, optimum çözümü doğrulamak için karşılaştırılır. Prosessin gösterimi için üç fazlı 100 kVA kuru tip bir transformatör kullanılır. Transformatörün matematiksel modeli oluşturulduktan sonra transformatör parametreleri, akım yoğunluğu (s) ve transformatör demir kesiti kabul edilebilirliği (C) optimize edilmiştir. Sonuç olarak, transformatörlerin verimlerinin geleneksel tekniklerle elde edilenin üzerinde artırılabileceği gözlemlenmiştir. Verimlilik optimize edilmiş ve 0.975'ten 0.9844'e yükseltilmiştir.
Transformers are considered as the significant contributors to the efficient transmission and distribution of electrical energy. The ability to change the voltage and current levels in inverse proportion help to reduce the conductor losses. However, today’s stringent requirements for more significant efficiency markings turn attention to the efficiency of individual components in a power system. Therefore, a great deal of effort is being placed to maximize the efficiency of the transformers without compromising their fundamental function. This is a complex problem and requires the use of advanced design tools. Metaheuristic methods developed in recent years are being used in electrical engineering, where they provide savings in design time and great success in finding the optimum solution. In this study, we have used the Particle Swarm Optimization (PSO), the Simulated Annealing (SA), and the Tree Seed Algorithm (TSA) methods, respectively. The objective is to develop a design methodology for three-phase dry-type transformers and to maximize their efficiency. The results of the three algorithms are compared to validate the optimum solution. For the demonstration of the process, a three-phase 100 kVA dry-type transformer is used. After the mathematical model of the transformer is created, the transformer parameters, current density (s), and transformer iron cross-section acceptability (C) are optimized. As a result, it has been observed that the efficiency of transformers can be increased beyond what is achieved with conventional techniques. The efficiency has been optimized and increased from 97.5% to 98.44%.
Transformers are considered as the significant contributors to the efficient transmission and distribution of electrical energy. The ability to change the voltage and current levels in inverse proportion help to reduce the conductor losses. However, today’s stringent requirements for more significant efficiency markings turn attention to the efficiency of individual components in a power system. Therefore, a great deal of effort is being placed to maximize the efficiency of the transformers without compromising their fundamental function. This is a complex problem and requires the use of advanced design tools. Metaheuristic methods developed in recent years are being used in electrical engineering, where they provide savings in design time and great success in finding the optimum solution. In this study, we have used the Particle Swarm Optimization (PSO), the Simulated Annealing (SA), and the Tree Seed Algorithm (TSA) methods, respectively. The objective is to develop a design methodology for three-phase dry-type transformers and to maximize their efficiency. The results of the three algorithms are compared to validate the optimum solution. For the demonstration of the process, a three-phase 100 kVA dry-type transformer is used. After the mathematical model of the transformer is created, the transformer parameters, current density (s), and transformer iron cross-section acceptability (C) are optimized. As a result, it has been observed that the efficiency of transformers can be increased beyond what is achieved with conventional techniques. The efficiency has been optimized and increased from 97.5% to 98.44%.
Description
DergiPark: 946496
konjes
konjes
Keywords
Optimizasyon, kuru tip transformatör, meta sezgisel algoritmalar, transformatör verimliliği, Optimization, dry-type transformer, metaheuristic algorithms, transformer efficiency, Optimization, Transformatör Verimliliği, Mühendislik, Meta Sezgisel Algoritmalar, Metaheuristic Algorithms, Transformer Efficiency, Optimizasyon, Engineering, Optimizasyon;kuru tip transformatör;meta sezgisel algoritmalar;transformatör verimliliği, Kuru Tip Transformatör, Dry-Type Transformer, Optimization;dry-type transformer;metaheuristic algorithms;transformer efficiency
Turkish CoHE Thesis Center URL
Fields of Science
0211 other engineering and technologies, 02 engineering and technology, 0202 electrical engineering, electronic engineering, information engineering
Citation
WoS Q
Q4
Scopus Q
N/A

OpenCitations Citation Count
4
Source
Konya Mühendislik Bilimleri Dergisi
Volume
9
Issue
4
Start Page
889
End Page
903
Collections
PlumX Metrics
Citations
CrossRef : 3
Captures
Mendeley Readers : 7
Google Scholar™

OpenAlex FWCI
0.45840711
Sustainable Development Goals
3
GOOD HEALTH AND WELL-BEING

4
QUALITY EDUCATION

6
CLEAN WATER AND SANITATION

7
AFFORDABLE AND CLEAN ENERGY

9
INDUSTRY, INNOVATION AND INFRASTRUCTURE

11
SUSTAINABLE CITIES AND COMMUNITIES

13
CLIMATE ACTION

14
LIFE BELOW WATER

17
PARTNERSHIPS FOR THE GOALS


