A Study on Generalization of Random Weight Network With Flat Loss
| dc.contributor.author | Liu, Chao | |
| dc.contributor.author | Liu, Qiang | |
| dc.contributor.author | Li, Rihao | |
| dc.contributor.author | Zhou, Xinlei | |
| dc.contributor.author | Kiran, Mustafa Servet | |
| dc.contributor.author | Wang, Xizhao | |
| dc.date.accessioned | 2025-10-10T15:20:38Z | |
| dc.date.available | 2025-10-10T15:20:38Z | |
| dc.date.issued | 2025 | |
| dc.description.abstract | In the scheme of learning which adjusts model parameters by minimizing a loss function, there is a conjecture that the loss function with flatter minimum may correlate with better stability and generalization of the model. This paper provides experimental evidence within the Random Weight Network (RWN)/Extreme Learning Machine (ELM) framework and further develops a theoretical analysis linking flatness to the local generalization error upper bound by deriving the RWN loss as a quadratic polynomial with respect to random weights and representing the flatness as the maximum eigenvalue of a semi-positive definite matrix. By adjusting the random weights using a genetic algorithm, where the fitness function is defined as the flatness, we validate on 10 benchmark datasets within the ELM framework that flatter loss indeed improves the model's generalization ability. The improvement size depends on the specific characteristics of datasets, particularly, on the relative decrease of maximum eigenvalues. This study shows that RWN generalization performance can be improved by optimizing random weight selection. | en_US |
| dc.description.sponsorship | National Natural Science Foundation of China [62376161, U24A20322]; Stable Support Project of Shenzhen City [20231122124602001]; China Postdoctoral Science Foundation [2024M762126]; Postdoctoral Fellowship Program [GZC20231728] | en_US |
| dc.description.sponsorship | This work was supported by the National Natural Science Foundation of China under Grants 62376161 and U24A20322; the Stable Support Project of Shenzhen City (No. 20231122124602001) ; the China Postdoctoral Science Foundation (No. 2024M762126) ; and the Postdoctoral Fellowship Program (No. GZC20231728) . | en_US |
| dc.identifier.doi | 10.1016/j.neucom.2025.131650 | |
| dc.identifier.issn | 0925-2312 | |
| dc.identifier.issn | 1872-8286 | |
| dc.identifier.scopus | 2-s2.0-105017233078 | |
| dc.identifier.uri | https://doi.org/10.1016/j.neucom.2025.131650 | |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier | en_US |
| dc.relation.ispartof | Neurocomputing | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Supervised Learning | en_US |
| dc.subject | Random Weight Network | en_US |
| dc.subject | Generalization | en_US |
| dc.subject | Loss Function | en_US |
| dc.subject | Flat Minimum | en_US |
| dc.title | A Study on Generalization of Random Weight Network With Flat Loss | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.scopusid | 57221259250 | |
| gdc.author.scopusid | 58601602000 | |
| gdc.author.scopusid | 60012992500 | |
| gdc.author.scopusid | 57214292437 | |
| gdc.author.scopusid | 54403096500 | |
| gdc.author.scopusid | 9734213500 | |
| gdc.author.wosid | Kiran, Mustafa/Aaf-9793-2019 | |
| gdc.author.wosid | Wang, Ran/Jfk-9105-2023 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Konya Technical University | en_US |
| gdc.description.departmenttemp | [Liu, Chao; Liu, Qiang; Li, Rihao; Zhou, Xinlei; Wang, Xizhao] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China; [Wang, Xizhao] Shenzhen Univ, Guangdong Key Lab Intelligent Informat Proc, Shenzhen 518060, Peoples R China; [Kiran, Mustafa Servet] Konya Tech Univ, Dept Comp Engn, TR-42250 Konya, Turkiye | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 131650 | |
| gdc.description.volume | 657 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W7094996763 | |
| gdc.identifier.wos | WOS:001587365500002 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 0.0 | |
| gdc.oaire.influence | 2.4895952E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.popularity | 2.7494755E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.openalex.fwci | 0.0 | |
| gdc.openalex.normalizedpercentile | 0.83 | |
| gdc.openalex.toppercent | TOP 1% | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.crossrefcites | 1 | |
| gdc.plumx.mendeley | 1 | |
| gdc.plumx.scopuscites | 1 | |
| gdc.scopus.citedcount | 0 | |
| gdc.virtual.author | Kıran, Mustafa Servet | |
| gdc.wos.citedcount | 0 | |
| relation.isAuthorOfPublication | 1b4c0009-61df-4135-a8d5-ed32324e2787 | |
| relation.isAuthorOfPublication.latestForDiscovery | 1b4c0009-61df-4135-a8d5-ed32324e2787 |
