Prediction of Uniaxial Compressive Strength of Rocks by Non-Destructive Testing Via Different Machine Learning Algorithms

dc.contributor.author Karakaya, Emre
dc.contributor.author Ince, Ismail
dc.date.accessioned 2025-11-10T16:55:37Z
dc.date.available 2025-11-10T16:55:37Z
dc.date.issued 2025
dc.description.abstract Uniaxial Compressive Strength (UCS) is a fundamental parameter in engineering projects, often serving as a primary input for various analyses. The direct determination of UCS requires laboratory sample preparation in accordance with established standards. However, in cases where sample extraction is unfeasible due to the rock type or field conditions, UCS must be estimated through indirect methods. Over the years, numerous rock properties such as porosity, density, P-wave velocity, and Schmidt hammer rebound value have been employed as predictor variables for UCS estimation. In this study, UCS was predicted using Schmidt hammer rebound (SHR) and Leeb hardness (HL), which are practical, cost-effective, and non-destructive testing methods. Various machine learning algorithms including Linear Regression, Ridge Regression, Lasso Regression, ElasticNet Regression, Random Forest, Gradient Boosting, and Support Vector Regression were applied for prediction. The correlation coefficient (R2) obtained from these models ranged between 0.75 and 1.00. Among the tested models, the Random Forest (RF) algorithm demonstrated the highest prediction accuracy, with validation metrics of RMSE = 1.93, MSE = 0.87, and R-2. en_US
dc.identifier.doi 10.13168/AGG.2025.0021
dc.identifier.issn 1214-9705
dc.identifier.scopus 2-s2.0-105017983145
dc.identifier.uri https://doi.org/10.13168/AGG.2025.0021
dc.identifier.uri https://hdl.handle.net/20.500.13091/10966
dc.language.iso en en_US
dc.publisher Acad Sci Czech Republic inst Rock Structure & Mechanics en_US
dc.relation.ispartof Acta Geodynamica Et Geomaterialia en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Uniaxial Compressive Strength Prediction en_US
dc.subject Schmidt Rebound Hammer en_US
dc.subject Leeb Hardness en_US
dc.subject Random Forest en_US
dc.subject Rock Strength en_US
dc.title Prediction of Uniaxial Compressive Strength of Rocks by Non-Destructive Testing Via Different Machine Learning Algorithms en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 57219230591
gdc.author.scopusid 16555121900
gdc.author.wosid Ince, Ismail/Aaa-3236-2021
gdc.author.wosid Karakaya, Emre/Lxw-8730-2024
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Konya Technical University en_US
gdc.description.departmenttemp [Karakaya, Emre] Konya Tech Univ, Dept Min Engn, Konya, Turkiye; [Ince, Ismail] Konya Tech Univ, Dept Geol Engn, Konya, Turkiye en_US
gdc.description.endpage 316
gdc.description.issue 3 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 303
gdc.description.volume 22 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q4
gdc.identifier.openalex W4412108320
gdc.identifier.wos WOS:001586923800002
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5349236E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.8669784E-9
gdc.oaire.publicfunded false
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.31
gdc.opencitations.count 0
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.virtual.author Karakaya, Emre
gdc.virtual.author İnce, İsmail
gdc.wos.citedcount 0
relation.isAuthorOfPublication 123c9286-7e52-455d-b81d-59c24aa67529
relation.isAuthorOfPublication aaab0c06-ea61-47ae-a2ea-5444b260751d
relation.isAuthorOfPublication.latestForDiscovery 123c9286-7e52-455d-b81d-59c24aa67529

Files