Comparison of Meta-Heuristic Algorithms on Benchmark Functions

dc.contributor.author Arıcı Ferda Nur
dc.contributor.author Kaya, Ersin
dc.date.accessioned 2024-12-02T19:21:17Z
dc.date.available 2024-12-02T19:21:17Z
dc.date.issued 2019
dc.description.abstract Optimization is a process to search the most suitable solution for a problem within an acceptable time interval. The algorithms that solve the optimization problems are called as optimization algorithms. In the literature, there are many optimization algorithms with different characteristics. The optimization algorithms can exhibit different behaviors depending on the size, characteristics and complexity of the optimization problem. In this study, six well-known population based optimization algorithms (artificial algae algorithm - AAA, artificial bee colony algorithm - ABC, differential evolution algorithm - DE, genetic algorithm - GA, gravitational search algorithm - GSA and particle swarm optimization - PSO) were used. These six algorithms were performed on the CEC’17 test functions. According to the experimental results, the algorithms were compared and performances of the algorithms were evaluated. en_US
dc.description.version Hakemli
dc.format.medium Basılı+Elektronik
dc.identifier 8289648
dc.identifier.doi 10.33793/acperpro.02.03.41
dc.identifier.issn 2667-5862
dc.identifier.uri http://dx.doi.org/10.33793/acperpro.02.03.41
dc.identifier.uri https://hdl.handle.net/20.500.13091/8586
dc.language.iso tr en_US
dc.relation ASOS en_US
dc.relation.ispartof Academic Perspective en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Mühendislik Temel Alanı>Bilgisayar Bilimleri ve Mühendisliği>Yapay Zeka>Yapay Öğrenme
dc.subject Metaheuristic Algorithms en_US
dc.subject Optimization en_US
dc.title Comparison of Meta-Heuristic Algorithms on Benchmark Functions en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Kaya, Ersin
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.endpage 517 en_US
gdc.description.issue 2 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 508 en_US
gdc.description.volume 2 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W2993035901
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 3.0
gdc.oaire.influence 2.9243632E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 6.8012542E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.fwci 0.61447098
gdc.openalex.normalizedpercentile 0.77
gdc.opencitations.count 6
gdc.plumx.mendeley 13
gdc.publishedmonth November
gdc.virtual.author Kaya, Ersin
relation.isAuthorOfPublication 6b459b99-eed9-45fb-b42f-50fbb4ee7090
relation.isAuthorOfPublication.latestForDiscovery 6b459b99-eed9-45fb-b42f-50fbb4ee7090

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ISITES2019ID41.pdf
Size:
507.24 KB
Format:
Adobe Portable Document Format
Description: