Enhancing Structural Health Monitoring of Fiber-Reinforced Polymer Composites Using Piezoresistive Ti3c2tx Mxene Fibers

dc.contributor.author Taymaz, B.H.
dc.contributor.author Kamış, H.
dc.contributor.author Dziendzikowski, M.
dc.contributor.author Kowalczyk, K.
dc.contributor.author Dragan, K.
dc.contributor.author Eskizeybek, V.
dc.date.accessioned 2025-02-10T18:09:58Z
dc.date.available 2025-02-10T18:09:58Z
dc.date.issued 2025
dc.description.abstract The anisotropic behavior of fiber-reinforced polymer composites, coupled with their susceptibility to various failure modes, poses challenges for their structural health monitoring (SHM) during service life. To address this, non-destructive testing techniques have been employed, but they often suffer from drawbacks such as high costs and suboptimal resolutions. Moreover, routine inspections fail to disclose incidents or failures occurring between successive assessments. As a result, there is a growing emphasis on SHM methods that enable continuous monitoring without grounding the aircraft. Our research focuses on advancing aerospace SHM through the utilization of piezoresistive MXene fibers. MXene, characterized by its 2D nanofiber architecture and exceptional properties, offers unique advantages for strain sensing applications. We successfully fabricate piezoresistive MXene fibers using wet spinning and integrate them into carbon fiber-reinforced epoxy laminates for in-situ strain sensing. Unlike previous studies focused on high strain levels, we adjust the strain levels to be comparable to those encountered in practical aerospace applications. Our results demonstrate remarkable sensitivity of MXene fibers within low strain ranges, with a maximum sensitivity of 0.9 at 0.13% strain. Additionally, MXene fibers exhibited high reliability for repetitive tensile deformations and low-velocity impact loading scenarios. This research contributes to the development of self-sensing composites, offering enhanced capabilities for early detection of damage and defects in aerospace structures, thereby improving safety and reducing maintenance expenses. © The Author(s) 2025. en_US
dc.description.sponsorship European Cooperation in Science and Technology, COST; Çanakkale Onsekiz Mart Üniversitesi, ÇOMÜ, (FBA-2020-3464, 221M523); European Commission, EC, (101079250) en_US
dc.identifier.doi 10.1038/s41598-024-78338-x
dc.identifier.issn 2045-2322
dc.identifier.scopus 2-s2.0-85216439074
dc.identifier.uri https://doi.org/10.1038/s41598-024-78338-x
dc.language.iso en en_US
dc.publisher Nature Research en_US
dc.relation.ispartof Scientific Reports en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Fiber-Reinforced Polymer Composites en_US
dc.subject Piezoresistive Strain Sensing en_US
dc.subject Structural Health Monitoring en_US
dc.subject Ti<Sub>3</Sub>C<Sub>2</Sub>T<Sub>X</Sub> Mxene Fibers en_US
dc.title Enhancing Structural Health Monitoring of Fiber-Reinforced Polymer Composites Using Piezoresistive Ti3c2tx Mxene Fibers en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Dziendzikowski, Michal/0000-0003-2555-0052
gdc.author.id Cowan, Charles/0009-0001-0841-0130
gdc.author.scopusid 57463276400
gdc.author.scopusid 57189366190
gdc.author.scopusid 36665970500
gdc.author.scopusid 57202039766
gdc.author.scopusid 55143215800
gdc.author.scopusid 37063115900
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Konya Technical University en_US
gdc.description.departmenttemp Taymaz B.H., Department of Chemical Engineering, Faculty of Engineering and Natural Sciences, Konya Technical University, Konya, 42079, Türkiye; Kamış H., Department of Chemical Engineering, Faculty of Engineering and Natural Sciences, Konya Technical University, Konya, 42079, Türkiye; Dziendzikowski M., Airworthiness Division, Air Force Institute of Technology, Warsaw, 01-494, United States; Kowalczyk K., Airworthiness Division, Air Force Institute of Technology, Warsaw, 01-494, United States; Dragan K., Airworthiness Division, Air Force Institute of Technology, Warsaw, 01-494, United States; Eskizeybek V., Department of Materials Science and Engineering, Faculty of Engineering, Çanakkale Onsekiz Mart Universitesi, Çanakkale, 17100, Türkiye en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.volume 15 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W4406590119
gdc.identifier.pmid 39828709
gdc.identifier.wos WOS:001400633600025
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type PubMed
gdc.oaire.accesstype HYBRID
gdc.oaire.diamondjournal false
gdc.oaire.impulse 3.0
gdc.oaire.influence 2.5608708E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Fiber-reinforced polymer composites
gdc.oaire.keywords Structural health monitoring
gdc.oaire.keywords Science
gdc.oaire.keywords Q
gdc.oaire.keywords R
gdc.oaire.keywords Medicine
gdc.oaire.keywords Piezoresistive strain sensing
gdc.oaire.keywords Ti3C2Tx MXene fibers
gdc.oaire.keywords Article
gdc.oaire.popularity 4.988074E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration International
gdc.openalex.fwci 6.34182859
gdc.openalex.normalizedpercentile 0.9
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.mendeley 24
gdc.plumx.pubmedcites 1
gdc.plumx.scopuscites 4
gdc.scopus.citedcount 3
gdc.virtual.author Kamış, Handan
gdc.wos.citedcount 3
relation.isAuthorOfPublication 815e4247-cb10-4780-acee-b4149419b886
relation.isAuthorOfPublication.latestForDiscovery 815e4247-cb10-4780-acee-b4149419b886

Files