A Generic Numerical Method for Treating a System of Volterra Integro-Differential Equations With Multiple Delays and Variable Bounds

dc.contributor.author Kürkçü, Ömür Kıvanç
dc.contributor.author Sezer, Mehmet
dc.date.accessioned 2024-06-19T14:41:55Z
dc.date.available 2024-06-19T14:41:55Z
dc.date.issued 2024
dc.description.abstract PurposeThis study aims to treat a novel system of Volterra integro-differential equations with multiple delays and variable bounds, constituting a generic numerical method based on the matrix equation and a combinatoric-parametric Charlier polynomials. The proposed method utilizes these polynomials for the matrix relations at the collocation points.Design/methodology/approachThanks to the combinatorial eligibility of the method, the functional terms can be transformed into the generic matrix relations with low dimensions, and their resulting matrix equation. The obtained solutions are tested with regard to the parametric behaviour of the polynomials with $\alpha$, taking into account the condition number of an outcome matrix of the method. Residual error estimation improves those solutions without using any external method. A calculation of the residual error bound is also fulfilled.FindingsAll computations are carried out by a special programming module. The accuracy and productivity of the method are scrutinized via numerical and graphical results. Based on the discussions, one can point out that the method is very proper to solve a system in question.Originality/valueThis paper introduces a generic computational numerical method containing the matrix expansions of the combinatoric Charlier polynomials, in order to treat the system of Volterra integro-differential equations with multiple delays and variable bounds. Thus, the method enables to evaluate stiff differential and integral parts of the system in question. That is, these parts generates two novel components in terms of unknown terms with both differentiated and delay arguments. A rigorous error analysis is deployed via the residual function. Four benchmark problems are solved and interpreted. Their graphical and numerical results validate accuracy and efficiency of the proposed method. In fact, a generic method is, thereby, provided into the literature. en_US
dc.identifier.doi 10.1108/EC-09-2023-0590
dc.identifier.issn 0264-4401
dc.identifier.issn 1758-7077
dc.identifier.scopus 2-s2.0-85195098852
dc.identifier.uri https://doi.org/10.1108/EC-09-2023-0590
dc.identifier.uri https://hdl.handle.net/20.500.13091/5723
dc.language.iso en en_US
dc.publisher Emerald Group Publishing Ltd en_US
dc.relation.ispartof Engineering computations en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Charlier polynomials en_US
dc.subject Matrix-collocation method en_US
dc.subject Residual error estimation en_US
dc.subject System of integro-differential equations en_US
dc.subject Differential-Equations en_US
dc.subject Nonlinear-Systems en_US
dc.subject Solve Systems en_US
dc.subject Collocation en_US
dc.subject Algorithm en_US
dc.subject Scheme en_US
dc.title A Generic Numerical Method for Treating a System of Volterra Integro-Differential Equations With Multiple Delays and Variable Bounds en_US
dc.type Article en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Kürkçü, Ömür Kıvanç
gdc.author.scopusid 57038964500
gdc.author.scopusid 8674094900
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department KTÜN en_US
gdc.description.departmenttemp [Kurkcu, Omur Kivanc] Konya Tech Univ, Dept Engn Basic Sci, Konya, Turkiye; [Sezer, Mehmet] Manisa Celal Bayar Univ, Dept Math, Manisa, Turkiye en_US
gdc.description.endpage 921
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 897
gdc.description.volume 41
gdc.description.wosquality Q2
gdc.identifier.openalex W4399353919
gdc.identifier.wos WOS:001238172400001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5349236E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.4744335E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.11
gdc.opencitations.count 0
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.virtual.author Kürkçü, Ömür Kıvanç
gdc.wos.citedcount 0
relation.isAuthorOfPublication 496ebac1-5a78-4ae4-8148-e9bc97c6af22
relation.isAuthorOfPublication.latestForDiscovery 496ebac1-5a78-4ae4-8148-e9bc97c6af22

Files