Involution-Based Harmonynet: an Efficient Hyperspectral Imaging Model for Automatic Detection of Neonatal Health Status

dc.contributor.author Cihan, Muecahit
dc.contributor.author Ceylan, Murat
dc.contributor.author Konak, Murat
dc.contributor.author Soylu, Hanifi
dc.date.accessioned 2024-11-10T14:54:23Z
dc.date.available 2024-11-10T14:54:23Z
dc.date.issued 2025
dc.description.abstract Background and Objective: Neonatal health is critical for early infant care, where accurate and timely diagnoses are essential for effective intervention. Traditional methods such as physical exams and laboratory tests may lack the precision required for early detection. Hyperspectral imaging (HSI) provides non-invasive, detailed analysis across multiple wavelengths, making it a promising tool for neonatal diagnostics. This study introduces HarmonyNet, an involution-based HSI model designed to improve the accuracy and efficiency of classifying neonatal health conditions. Methods: Data from 220 neonates were collected at the Neonatal Intensive Care Unit of Sel & ccedil;uk University, comprising 110 healthy infants and 110 diagnosed with conditions such as respiratory distress syndrome (RDS), pneumothorax (PTX), and coarctation of the aorta (AORT). The HarmonyNet model incorporates involution kernels and residual blocks to enhance feature extraction. The model's performance was evaluated using metrics such as overall accuracy, precision, recall, and area under the curve (AUC). Ablation studies were conducted to optimize hyperparameters and network architecture. Results: HarmonyNet achieved an AUC of 98.99%, with overall accuracy, precision and recall rates of 90.91%, outperforming existing convolution-based models. Its low parameter count and computational efficiency proved particularly advantageous in low-data scenarios. Ablation studies further demonstrated the importance of involution layers and residual blocks in improving classification accuracy. Conclusions: HarmonyNet represents a significant advancement in neonatal diagnostics, offering high accuracy with computational efficiency. Its non-invasive nature can contribute to improved health outcomes and more efficient medical interventions. Future research should focus on expanding the dataset and exploring the model's potential in multi-class classification tasks. en_US
dc.description.sponsorship Scientific and Technological Research Council of Turkey (TUBITAK) [122E021]; TUBITAK en_US
dc.description.sponsorship This study was supported by Scientific and Technological Research Council of Turkey (TUBITAK) under the Grant Number 122E021. The authors thank to TUBITAK for their supports. en_US
dc.identifier.doi 10.1016/j.bspc.2024.106982
dc.identifier.issn 1746-8094
dc.identifier.issn 1746-8108
dc.identifier.scopus 2-s2.0-85206267291
dc.identifier.uri https://doi.org/10.1016/j.bspc.2024.106982
dc.identifier.uri https://hdl.handle.net/20.500.13091/6551
dc.language.iso en en_US
dc.publisher ELSEVIER SCI LTD en_US
dc.relation.ispartof Biomedical Signal Processing and Control en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Neonatal Health en_US
dc.subject Hyperspectral Imaging en_US
dc.subject Involution en_US
dc.subject Automated Diagnostics en_US
dc.subject Foundation Model en_US
dc.subject HarmonyNet en_US
dc.subject Classification en_US
dc.subject Selection en_US
dc.title Involution-Based Harmonynet: an Efficient Hyperspectral Imaging Model for Automatic Detection of Neonatal Health Status en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional
gdc.author.scopusid 57226111647
gdc.author.scopusid 56276648900
gdc.author.scopusid 6506559837
gdc.author.scopusid 7003480890
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department KTÜN en_US
gdc.description.departmenttemp [Cihan, Muecahit; Ceylan, Murat] Konya Tech Univ, Fac Engn & Nat Sci, Dept Elect & Elect Engn, Konya, Turkiye; [Konak, Murat; Soylu, Hanifi] Selcuk Univ, Fac Med, Dept Internal Med, Konya, Turkiye en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 106982
gdc.description.volume 100 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W4403384919
gdc.identifier.wos WOS:001335900500001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 6.0
gdc.oaire.influence 2.8621943E-9
gdc.oaire.isgreen true
gdc.oaire.popularity 7.3142687E-9
gdc.oaire.publicfunded false
gdc.openalex.fwci 3.07467501
gdc.openalex.normalizedpercentile 0.89
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.crossrefcites 2
gdc.plumx.mendeley 6
gdc.plumx.scopuscites 6
gdc.scopus.citedcount 6
gdc.virtual.author Ceylan, Murat
gdc.wos.citedcount 3
relation.isAuthorOfPublication 3ddb550c-8d12-4840-a8d4-172ab9dc9ced
relation.isAuthorOfPublication.latestForDiscovery 3ddb550c-8d12-4840-a8d4-172ab9dc9ced

Files