Feature Fusion Using Deep Learning Algorithms in Image Classification for Security Purposes by Random Weight Network

dc.contributor.author Kiran, Mustafa Servet
dc.contributor.author Seyfi, Gokhan
dc.contributor.author Yilmaz, Merve
dc.contributor.author Esme, Engin
dc.contributor.author Wang, Xizhao
dc.date.accessioned 2025-09-10T16:52:15Z
dc.date.available 2025-09-10T16:52:15Z
dc.date.issued 2025
dc.description.abstract Automated threat detection in X-ray security imagery is a critical yet challenging task, where conventional deep learning models often struggle with low accuracy and overfitting. This study addresses these limitations by introducing a novel framework based on feature fusion. The proposed method extracts features from multiple and diverse deep learning architectures and classifies them using a Random Weight Network (RWN), whose hyperparameters are optimized for maximum performance. The results show substantial improvements at each stage: while the best standalone deep learning model achieved a test accuracy of 83.55%, applying the RWN to a single feature set increased accuracy to 94.82%. Notably, the proposed feature fusion framework achieved a state-of-the-art test accuracy of 97.44%. These findings demonstrate that a modular approach combining multi-model feature fusion with an efficient classifier is a highly effective strategy for improving the accuracy and generalization capability of automated threat detection systems. en_US
dc.identifier.doi 10.3390/app15169053
dc.identifier.issn 2076-3417
dc.identifier.scopus 2-s2.0-105014432830
dc.identifier.uri https://doi.org/10.3390/app15169053
dc.identifier.uri https://hdl.handle.net/20.500.13091/10703
dc.language.iso en en_US
dc.publisher MDPI en_US
dc.relation.ispartof Applied Sciences-Basel en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Deep Learning en_US
dc.subject Feature Fusion en_US
dc.subject Random Weight Network en_US
dc.subject X-Ray Security en_US
dc.title Feature Fusion Using Deep Learning Algorithms in Image Classification for Security Purposes by Random Weight Network en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 54403096500
gdc.author.scopusid 58576350300
gdc.author.scopusid 58587037700
gdc.author.scopusid 57189468408
gdc.author.scopusid 9734213500
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Konya Technical University en_US
gdc.description.departmenttemp [Kiran, Mustafa Servet; Yilmaz, Merve] Konya Tech Univ, Fac Comp & Informat Sci, Dept Comp Engn, TR-42250 Konya, Turkiye; [Seyfi, Gokhan] Gumushane Univ, Fac Engn & Nat Sci, Dept Software Engn, TR-29100 Gumushane, Turkiye; [Esme, Engin] Konya Tech Univ, Fac Comp & Informat Sci, Dept Software Engn, TR-42250 Konya, Turkiye; [Wang, Xizhao] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China en_US
gdc.description.issue 16 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 9053
gdc.description.volume 15 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W4413314363
gdc.identifier.wos WOS:001557227400001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.7494755E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration International
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.16
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.mendeley 1
gdc.plumx.newscount 1
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 0
gdc.virtual.author Kıran, Mustafa Servet
gdc.virtual.author Seyfi, Gökhan
gdc.virtual.author Yılmaz, Merve
gdc.virtual.author Eşme, Engin
gdc.wos.citedcount 0
relation.isAuthorOfPublication 1b4c0009-61df-4135-a8d5-ed32324e2787
relation.isAuthorOfPublication 69e4760a-76ec-40d4-bd95-513567458b60
relation.isAuthorOfPublication a7f3fa31-de8d-42eb-93f6-b221ace9000e
relation.isAuthorOfPublication c5d1c3d6-4f52-4ee3-bf9a-581fe29780e6
relation.isAuthorOfPublication.latestForDiscovery 1b4c0009-61df-4135-a8d5-ed32324e2787

Files