Porosity Analysis and Thermal Conductivity Prediction of Non-Autoclaved Aerated Concrete Using Convolutional Neural Network and Numerical Modeling
| dc.contributor.author | Beskopylny, Alexey N. | |
| dc.contributor.author | Shcherban', Evgenii M. | |
| dc.contributor.author | Stel'makh, Sergey A. | |
| dc.contributor.author | Elshaeva, Diana | |
| dc.contributor.author | Chernil'nik, Andrei | |
| dc.contributor.author | Razveeva, Irina | |
| dc.contributor.author | Ozkilic, Yasin Onuralp | |
| dc.date.accessioned | 2025-08-10T17:19:59Z | |
| dc.date.available | 2025-08-10T17:19:59Z | |
| dc.date.issued | 2025 | |
| dc.description.abstract | Currently, the visual study of the structure of building materials and products is gradually supplemented by intelligent algorithms based on computer vision technologies. These algorithms are powerful tools for the visual diagnostic analysis of materials and are of great importance in analyzing the quality of production processes and predicting their mechanical properties. This paper considers the process of analyzing the visual structure of non-autoclaved aerated concrete products, namely their porosity, using the YOLOv11 convolutional neural network, with a subsequent prediction of one of the most important properties-thermal conductivity. The object of this study is a database of images of aerated concrete samples obtained under laboratory conditions and under the same photography conditions, supplemented by using the author's augmentation algorithm (up to 100 photographs). The results of the porosity analysis, obtained in the form of a log-normal distribution of pore sizes, show that the developed computer vision model has a high accuracy of analyzing the porous structure of the material under study: Precision = 0.86 and Recall = 0.88 for detection; precision = 0.86 and recall = 0.91 for segmentation. The Hellinger and Kolmogorov-Smirnov statistical criteria, for determining the belonging of the real distribution and the one obtained using the intelligent algorithm to the same general population show high significance. Subsequent modeling of the material using the ANSYS 2024 R2 Material Designer module, taking into account the stochastic nature of the pore size, allowed us to predict the main characteristics-thermal conductivity and density. Comparison of the predicted results with real data showed an error less than 7%. | en_US |
| dc.description.sponsorship | Don State Technical University | en_US |
| dc.description.sponsorship | The authors would like to acknowledge the administration of Don State Technical University for their provision of resources and financial support. | en_US |
| dc.identifier.doi | 10.3390/buildings15142442 | |
| dc.identifier.issn | 2075-5309 | |
| dc.identifier.scopus | 2-s2.0-105011621024 | |
| dc.identifier.uri | https://doi.org/10.3390/buildings15142442 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.13091/10587 | |
| dc.language.iso | en | en_US |
| dc.publisher | MDPI | en_US |
| dc.relation.ispartof | Buildings | |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Aerated Concrete | en_US |
| dc.subject | Pore Analysis | en_US |
| dc.subject | Computer Vision | en_US |
| dc.subject | Convolutional Neural Network | en_US |
| dc.subject | Thermal Conductivity | en_US |
| dc.title | Porosity Analysis and Thermal Conductivity Prediction of Non-Autoclaved Aerated Concrete Using Convolutional Neural Network and Numerical Modeling | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.scopusid | 59995649900 | |
| gdc.author.scopusid | 57197730793 | |
| gdc.author.scopusid | 57347334300 | |
| gdc.author.scopusid | 57365892100 | |
| gdc.author.scopusid | 57216629134 | |
| gdc.author.scopusid | 57221325850 | |
| gdc.author.scopusid | 57193686945 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Konya Technical University | en_US |
| gdc.description.departmenttemp | [Beskopylny, Alexey N.] Don State Tech Univ, Fac Rd & Transport Syst, Dept Transport Syst, Rostov Na Donu 344003, Russia; [Shcherban', Evgenii M.] Don State Tech Univ, Dept Engn Geometry & Comp Graph, Rostov Na Donu 344003, Russia; [Stel'makh, Sergey A.; Elshaeva, Diana; Chernil'nik, Andrei; Razveeva, Irina] Don State Tech Univ, Dept Unique Bldg & Construct Engn, Rostov Na Donu 344003, Russia; [Panfilov, Ivan] Don State Tech Univ, Agribusiness Fac, Dept Theoret & Appl Mech, Gagarin Sq, Rostov Na Donu 344003, Russia; [Kozhakin, Alexey] OOO VDK, SKOLKOVO, Bolshoi Blvd 42, Moscow 121205, Russia; [Madenci, Emrah; Ozkilic, Yasin Onuralp] Necmettin Erbakan Univ, Fac Engn, Dept Civil Engn, TR-42000 Konya, Turkiye; [Aksoylu, Ceyhun] Konya Tech Univ, Fac Engn & Nat Sci, Dept Civil Engn, TR-42000 Konya, Turkiye | en_US |
| gdc.description.issue | 14 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q2 | |
| gdc.description.startpage | 2442 | |
| gdc.description.volume | 15 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q2 | |
| gdc.identifier.openalex | W4412199124 | |
| gdc.identifier.wos | WOS:001535681200001 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 2.0 | |
| gdc.oaire.influence | 2.5498441E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Building construction | |
| gdc.oaire.keywords | pore analysis | |
| gdc.oaire.keywords | convolutional neural network | |
| gdc.oaire.keywords | thermal conductivity | |
| gdc.oaire.keywords | aerated concrete | |
| gdc.oaire.keywords | computer vision | |
| gdc.oaire.keywords | TH1-9745 | |
| gdc.oaire.popularity | 4.2416124E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 12.27350399 | |
| gdc.openalex.normalizedpercentile | 0.97 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.mendeley | 2 | |
| gdc.plumx.newscount | 1 | |
| gdc.plumx.scopuscites | 2 | |
| gdc.scopus.citedcount | 2 | |
| gdc.wos.citedcount | 2 |
