Porosity Analysis and Thermal Conductivity Prediction of Non-Autoclaved Aerated Concrete Using Convolutional Neural Network and Numerical Modeling

dc.contributor.author Beskopylny, Alexey N.
dc.contributor.author Shcherban', Evgenii M.
dc.contributor.author Stel'makh, Sergey A.
dc.contributor.author Elshaeva, Diana
dc.contributor.author Chernil'nik, Andrei
dc.contributor.author Razveeva, Irina
dc.contributor.author Ozkilic, Yasin Onuralp
dc.date.accessioned 2025-08-10T17:19:59Z
dc.date.available 2025-08-10T17:19:59Z
dc.date.issued 2025
dc.description.abstract Currently, the visual study of the structure of building materials and products is gradually supplemented by intelligent algorithms based on computer vision technologies. These algorithms are powerful tools for the visual diagnostic analysis of materials and are of great importance in analyzing the quality of production processes and predicting their mechanical properties. This paper considers the process of analyzing the visual structure of non-autoclaved aerated concrete products, namely their porosity, using the YOLOv11 convolutional neural network, with a subsequent prediction of one of the most important properties-thermal conductivity. The object of this study is a database of images of aerated concrete samples obtained under laboratory conditions and under the same photography conditions, supplemented by using the author's augmentation algorithm (up to 100 photographs). The results of the porosity analysis, obtained in the form of a log-normal distribution of pore sizes, show that the developed computer vision model has a high accuracy of analyzing the porous structure of the material under study: Precision = 0.86 and Recall = 0.88 for detection; precision = 0.86 and recall = 0.91 for segmentation. The Hellinger and Kolmogorov-Smirnov statistical criteria, for determining the belonging of the real distribution and the one obtained using the intelligent algorithm to the same general population show high significance. Subsequent modeling of the material using the ANSYS 2024 R2 Material Designer module, taking into account the stochastic nature of the pore size, allowed us to predict the main characteristics-thermal conductivity and density. Comparison of the predicted results with real data showed an error less than 7%. en_US
dc.description.sponsorship Don State Technical University en_US
dc.description.sponsorship The authors would like to acknowledge the administration of Don State Technical University for their provision of resources and financial support. en_US
dc.identifier.doi 10.3390/buildings15142442
dc.identifier.issn 2075-5309
dc.identifier.scopus 2-s2.0-105011621024
dc.identifier.uri https://doi.org/10.3390/buildings15142442
dc.identifier.uri https://hdl.handle.net/20.500.13091/10587
dc.language.iso en en_US
dc.publisher MDPI en_US
dc.relation.ispartof Buildings
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Aerated Concrete en_US
dc.subject Pore Analysis en_US
dc.subject Computer Vision en_US
dc.subject Convolutional Neural Network en_US
dc.subject Thermal Conductivity en_US
dc.title Porosity Analysis and Thermal Conductivity Prediction of Non-Autoclaved Aerated Concrete Using Convolutional Neural Network and Numerical Modeling en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 59995649900
gdc.author.scopusid 57197730793
gdc.author.scopusid 57347334300
gdc.author.scopusid 57365892100
gdc.author.scopusid 57216629134
gdc.author.scopusid 57221325850
gdc.author.scopusid 57193686945
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Konya Technical University en_US
gdc.description.departmenttemp [Beskopylny, Alexey N.] Don State Tech Univ, Fac Rd & Transport Syst, Dept Transport Syst, Rostov Na Donu 344003, Russia; [Shcherban', Evgenii M.] Don State Tech Univ, Dept Engn Geometry & Comp Graph, Rostov Na Donu 344003, Russia; [Stel'makh, Sergey A.; Elshaeva, Diana; Chernil'nik, Andrei; Razveeva, Irina] Don State Tech Univ, Dept Unique Bldg & Construct Engn, Rostov Na Donu 344003, Russia; [Panfilov, Ivan] Don State Tech Univ, Agribusiness Fac, Dept Theoret & Appl Mech, Gagarin Sq, Rostov Na Donu 344003, Russia; [Kozhakin, Alexey] OOO VDK, SKOLKOVO, Bolshoi Blvd 42, Moscow 121205, Russia; [Madenci, Emrah; Ozkilic, Yasin Onuralp] Necmettin Erbakan Univ, Fac Engn, Dept Civil Engn, TR-42000 Konya, Turkiye; [Aksoylu, Ceyhun] Konya Tech Univ, Fac Engn & Nat Sci, Dept Civil Engn, TR-42000 Konya, Turkiye en_US
gdc.description.issue 14 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 2442
gdc.description.volume 15 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W4412199124
gdc.identifier.wos WOS:001535681200001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 2.0
gdc.oaire.influence 2.5498441E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Building construction
gdc.oaire.keywords pore analysis
gdc.oaire.keywords convolutional neural network
gdc.oaire.keywords thermal conductivity
gdc.oaire.keywords aerated concrete
gdc.oaire.keywords computer vision
gdc.oaire.keywords TH1-9745
gdc.oaire.popularity 4.2416124E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration International
gdc.openalex.fwci 12.27350399
gdc.openalex.normalizedpercentile 0.97
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.mendeley 2
gdc.plumx.newscount 1
gdc.plumx.scopuscites 2
gdc.scopus.citedcount 2
gdc.wos.citedcount 2

Files