Through-Wall Radar Classification of Human Posture Using Convolutional Neural Networks

dc.contributor.author Kılıç, Alper
dc.contributor.author Babaoğlu, İsmail
dc.contributor.author Babalık, Ahmet
dc.contributor.author Arslan, Ahmet
dc.date.accessioned 2021-12-13T10:32:04Z
dc.date.available 2021-12-13T10:32:04Z
dc.date.issued 2019
dc.description.abstract Through-wall detection and classification are highly desirable for surveillance, security, and military applications in areas that cannot be sensed using conventional measures. In the domain of these applications, a key challenge is an ability not only to sense the presence of individuals behind the wall but also to classify their actions and postures. Researchers have applied ultrawideband (UWB) radars to penetrate wall materials and make intelligent decisions about the contents of rooms and buildings. As a form of UWB radar, stepped frequency continuous wave (SFCW) radars have been preferred due to their advantages. On the other hand, the success of classification with deep learning methods in different problems is remarkable. Since the radar signals contain valuable information about the objects behind the wall, the use of deep learning techniques for classification purposes will give a different direction to the research. This paper focuses on the classification of the human posture behind the wall using through-wall radar signals and a convolutional neural network (CNN). The SFCW radar is used to collect radar signals reflected from the human target behind the wall. These signals are employed to classify the presence of the human and the human posture whether he/she is standing or sitting by using CNN. The proposed approach achieves remarkable and successful results without the need for detailed preprocessing operations and long-term data used in the traditional approaches. en_US
dc.description.sponsorship STM Savunma Teknolojileri Muhendislik ve Ticaret A.S. company en_US
dc.description.sponsorship The authors would like to thank the STM Savunma Teknolojileri Muhendislik ve Ticaret A.S. company for their cooperation and support. en_US
dc.identifier.doi 10.1155/2019/7541814
dc.identifier.issn 1687-5869
dc.identifier.issn 1687-5877
dc.identifier.scopus 2-s2.0-85065873214
dc.identifier.uri https://doi.org/10.1155/2019/7541814
dc.identifier.uri https://hdl.handle.net/20.500.13091/853
dc.language.iso en en_US
dc.publisher HINDAWI LTD en_US
dc.relation.ispartof INTERNATIONAL JOURNAL OF ANTENNAS AND PROPAGATION en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.title Through-Wall Radar Classification of Human Posture Using Convolutional Neural Networks en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Kilic, Alper/0000-0002-1567-0213
gdc.author.scopusid 57020987500
gdc.author.scopusid 23097339300
gdc.author.scopusid 23090315600
gdc.author.scopusid 56919273700
gdc.author.wosid Kilic, Alper/X-5706-2019
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
gdc.description.endpage 10
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 1
gdc.description.volume 2019 en_US
gdc.description.wosquality Q4
gdc.identifier.openalex W2933443568
gdc.identifier.wos WOS:000464775300001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 7.0
gdc.oaire.influence 3.9470307E-9
gdc.oaire.isgreen false
gdc.oaire.keywords HE9713-9715
gdc.oaire.keywords Electrical engineering. Electronics. Nuclear engineering
gdc.oaire.keywords Cellular telephone services industry. Wireless telephone industry
gdc.oaire.keywords TK1-9971
gdc.oaire.popularity 1.8727272E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 2.86729312
gdc.openalex.normalizedpercentile 0.89
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 17
gdc.plumx.mendeley 33
gdc.plumx.scopuscites 36
gdc.scopus.citedcount 36
gdc.virtual.author Kılıç, Alper
gdc.virtual.author Babalık, Ahmet
gdc.virtual.author Babaoğlu, İsmail
gdc.wos.citedcount 25
relation.isAuthorOfPublication 3b00abbb-b347-461b-a399-1dd3ce0cc21a
relation.isAuthorOfPublication 8aeebcc5-0e51-4c78-8502-bcfcde439b34
relation.isAuthorOfPublication 871b6e10-080d-4f91-8bf5-c78453b0d57d
relation.isAuthorOfPublication.latestForDiscovery 3b00abbb-b347-461b-a399-1dd3ce0cc21a

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
7541814.pdf
Size:
5.74 MB
Format:
Adobe Portable Document Format