A Machine Learning-Based Modeling Approach for Dye Removal Using Modified Natural Adsorbents

dc.contributor.author Uzbas, Betul
dc.contributor.author Kocaman, Suheyla
dc.date.accessioned 2025-09-10T16:52:14Z
dc.date.available 2025-09-10T16:52:14Z
dc.date.issued 2025
dc.description.abstract This study used machine learning models to investigate the potential of biosorbents derived from natural fruit seed waste (apricot, almond, and walnut) for removing a cationic dye. Levulinic acid (LA)-modified powders of almond shell (ASh), apricot kernel shell (APKSh), and walnut shell (WSh) were used to remove methylene blue (MB) from an aqueous solution, producing 105 experimental data points under various circumstances. Attributes included pH (3-5), adsorbent dose (0.4-6.0 g/L), concentration (10-500 mg/L), time (30-600 min), and temperature (25-55 degrees C). Species information was incorporated into the data set using the One-Hot Encoding method. The data were normalized using the min-max method, and due to the non-normal distribution of the data, Spearman correlation analysis was employed to rank the importance of the attributes. Gradient Boosting (GB), Multilayer Perceptron (MLP), XGBoost (XGB), and Random Forest (RF) algorithms were applied for regression estimation. Based on 5-fold cross-validation results, the GB model achieved the highest performance, with R2 values of 0.8858 for removal percentage and 0.9532 for adsorption capacity. en_US
dc.identifier.doi 10.1021/acs.jcim.5c01016
dc.identifier.issn 1549-9596
dc.identifier.issn 1549-960X
dc.identifier.scopus 2-s2.0-105014104952
dc.identifier.uri https://doi.org/10.1021/acs.jcim.5c01016
dc.identifier.uri https://hdl.handle.net/20.500.13091/10696
dc.language.iso en en_US
dc.publisher Amer Chemical Soc en_US
dc.relation.ispartof Journal of Chemical Information and Modeling en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.title A Machine Learning-Based Modeling Approach for Dye Removal Using Modified Natural Adsorbents en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 57201915831
gdc.author.scopusid 55614000500
gdc.author.wosid Kocaman, Suheyla/S-1182-2019
gdc.author.wosid Uzbaş, Betül/Aam-2345-2020
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Konya Technical University en_US
gdc.description.departmenttemp [Uzbas, Betul] Konya Tech Univ, Comp Engn Dept, TR-22250 Konya, Turkiye; [Kocaman, Suheyla] Konya Tech Univ, Chem Engn Dept, TR-22250 Konya, Turkiye en_US
gdc.description.endpage 8496 en_US
gdc.description.issue 16 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 8486 en_US
gdc.description.volume 65 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W4413052236
gdc.identifier.wos WOS:001546616400001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype HYBRID
gdc.oaire.diamondjournal false
gdc.oaire.impulse 2.0
gdc.oaire.influence 2.5653368E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Article
gdc.oaire.popularity 3.5035963E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 10.03679086
gdc.openalex.normalizedpercentile 0.96
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.mendeley 8
gdc.plumx.scopuscites 2
gdc.scopus.citedcount 2
gdc.virtual.author Kocaman, Süheyla
gdc.virtual.author Uzbaş, Betül
gdc.wos.citedcount 2
relation.isAuthorOfPublication ac37ae47-3872-4eb6-bb75-aed97699f937
relation.isAuthorOfPublication b37a91b2-acda-4cb4-9cb2-12392200749f
relation.isAuthorOfPublication.latestForDiscovery ac37ae47-3872-4eb6-bb75-aed97699f937

Files