A Novel Approach for Visualization of Class Activation Maps With Reduced Dimensions

dc.contributor.author Örnek, A.H.
dc.contributor.author Ceylan, M.
dc.date.accessioned 2023-03-03T13:33:36Z
dc.date.available 2023-03-03T13:33:36Z
dc.date.issued 2022
dc.description 2022 Innovations in Intelligent Systems and Applications Conference, ASYU 2022 -- 7 September 2022 through 9 September 2022 -- 183936 en_US
dc.description.abstract Explaining how deep neural networks work is a new and challenging area for computer vision projects. The deep learning models are seen as Black-Box models because of the number of hidden layers, neurons, and activation functions. Class Activation Map (CAM) is a method that allows highlighting the most important features utilizing the last convolution layer. Since the last convolutional layer has lots of filters, it causes to create unfocused CAM outputs. Applying the Principal Component Analysis method to the filters for the purpose of uncovering the most important filters the filter size is reduced from 512 to 10 in this study. The results show that when the reduced filters are used, more focused CAMs are obtained. These maps can be used for weakly-supervised applications such as object detection and image segmentation. © 2022 IEEE. en_US
dc.description.sponsorship This study was supported by ”WeSight AI-Powered Solutions” project of Huawei Turkey R&D Center. en_US
dc.identifier.doi 10.1109/ASYU56188.2022.9925400
dc.identifier.isbn 9781665488945
dc.identifier.scopus 2-s2.0-85142760824
dc.identifier.uri https://doi.org/10.1109/ASYU56188.2022.9925400
dc.identifier.uri https://hdl.handle.net/20.500.13091/3695
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof Proceedings - 2022 Innovations in Intelligent Systems and Applications Conference, ASYU 2022 en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject class activation map en_US
dc.subject deep learning en_US
dc.subject explainable artificial intelligence en_US
dc.subject principal component analysis en_US
dc.subject Activation analysis en_US
dc.subject Chemical activation en_US
dc.subject Convolution en_US
dc.subject Deep neural networks en_US
dc.subject Object detection en_US
dc.subject Activation functions en_US
dc.subject Activation maps en_US
dc.subject Black box modelling en_US
dc.subject Class activation map en_US
dc.subject Deep learning en_US
dc.subject Explainable artificial intelligence en_US
dc.subject Hidden layer neurons en_US
dc.subject Learning models en_US
dc.subject Neuron functions en_US
dc.subject Principal-component analysis en_US
dc.subject Principal component analysis en_US
dc.title A Novel Approach for Visualization of Class Activation Maps With Reduced Dimensions en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.institutional
gdc.author.scopusid 57210593918
gdc.author.scopusid 56276648900
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department KTUN en_US
gdc.description.departmenttemp Ornek, A.H., Yapay Zeka Ve Elektronik Ltd. Şti., Artmeta Ai, Istanbul, Turkey; Ceylan, M., Konya Technical University, Electrical Electronics Engineering Department, Konya, Turkey en_US
gdc.description.endpage 5
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 1
gdc.description.wosquality N/A
gdc.identifier.openalex W4312291007
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 2.0
gdc.oaire.influence 2.65003E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 3.4140828E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 0.79472954
gdc.openalex.normalizedpercentile 0.63
gdc.opencitations.count 2
gdc.plumx.mendeley 4
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 1
gdc.virtual.author Ceylan, Murat
relation.isAuthorOfPublication 3ddb550c-8d12-4840-a8d4-172ab9dc9ced
relation.isAuthorOfPublication.latestForDiscovery 3ddb550c-8d12-4840-a8d4-172ab9dc9ced

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
A_Novel_Approach_for_Visualization_of_Class_Activation_Maps_with_Reduced_Dimensions.pdf
Size:
2.27 MB
Format:
Adobe Portable Document Format