Multi-Class Brain Normality and Abnormality Diagnosis Using Modified Faster R-Cnn

dc.contributor.author Uyar, Kübra
dc.contributor.author Taşdemir, Şakir
dc.contributor.author Ülker, Erkan
dc.contributor.author Öztürk, Mehmet
dc.contributor.author Kasap, Hüseyin
dc.date.accessioned 2021-12-13T10:41:25Z
dc.date.available 2021-12-13T10:41:25Z
dc.date.issued 2021
dc.description.abstract Background and Objective: The detection and analysis of brain disorders through medical imaging techniques are extremely important to get treatment on time and sustain a healthy lifestyle. Disorders cause permanent brain damage and alleviate the lifespan. Moreover, the classification of large volumes of medical image data manually by medicine experts is tiring, time-consuming, and prone to errors. This study aims to diagnose brain normality and abnormalities using a novel ResNet50 modified Faster Regions with Convolutional Neural Network(R-CNN) model. The classification task is performed into multiple classes which are hemorrhage, hydrocephalus, and normal. The proposed model both determines the borders of the normal/abnormal parts and classifies them with the highest accuracy. Methods: To provide a comprehensive performance analysis in the classification problem, Machine Learning(ML) and Deep Learning(DL) techniques were discussed. Artificial Neural Network(ANN), AdaBoost(AB), Decision Tree(DT), Logistic Regression(LR), Naive Bayes(NB), Random Forest(RF), and Support Vector Machine(SVM) were used as ML models. Besides, various Convolutional Neural Network(CNN) models and proposed ResNet50 modified Faster R-CNN model were used as DL models. Methods were validated using a novel brain dataset that contains both normal and abnormal images. Results: Based on results, LR obtained the highest result among ML methods and DenseNet201 obtained the highest results among CNN models with the accuracy of 84.80% and 85.68% for the classification task, respectively. Besides, the accuracy obtained by the proposed model is 99.75%. Conclusions: Experimental results demonstrate that the proposed model has yielded better performance for detection and classification tasks. This artificial intelligence(AI) framework can be utilized as a computer-aided medical decision support system for medical experts. en_US
dc.description.sponsorship Selcuk UniversitySelcuk University [2017-OYP-047] en_US
dc.description.sponsorship This study was supported by Selcuk University and Coordinatorship of Faculty Member Training Program with Project No:2017-OYP-047. en_US
dc.identifier.doi 10.1016/j.ijmedinf.2021.104576
dc.identifier.issn 1386-5056
dc.identifier.issn 1872-8243
dc.identifier.scopus 2-s2.0-85115290443
dc.identifier.uri https://doi.org/10.1016/j.ijmedinf.2021.104576
dc.identifier.uri https://hdl.handle.net/20.500.13091/1484
dc.language.iso en en_US
dc.publisher ELSEVIER IRELAND LTD en_US
dc.relation.ispartof INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Brain CT en_US
dc.subject CNN en_US
dc.subject Detection en_US
dc.subject Faster R-CNN en_US
dc.subject Machine Learning en_US
dc.title Multi-Class Brain Normality and Abnormality Diagnosis Using Modified Faster R-Cnn en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 57193266558
gdc.author.scopusid 23767567700
gdc.author.scopusid 23393979800
gdc.author.scopusid 56404071200
gdc.author.scopusid 57266642900
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 104576
gdc.description.volume 155 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W3199994048
gdc.identifier.pmid 34555555
gdc.identifier.wos WOS:000706582400004
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type PubMed
gdc.oaire.diamondjournal false
gdc.oaire.impulse 9.0
gdc.oaire.influence 3.3555447E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Support Vector Machine
gdc.oaire.keywords Artificial Intelligence
gdc.oaire.keywords Brain
gdc.oaire.keywords Humans
gdc.oaire.keywords Bayes Theorem
gdc.oaire.keywords Neural Networks, Computer
gdc.oaire.popularity 1.0195471E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0302 clinical medicine
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 1.52049812
gdc.openalex.normalizedpercentile 0.78
gdc.opencitations.count 11
gdc.plumx.crossrefcites 12
gdc.plumx.mendeley 29
gdc.plumx.pubmedcites 3
gdc.plumx.scopuscites 15
gdc.scopus.citedcount 15
gdc.virtual.author Ülker, Erkan
gdc.wos.citedcount 10
relation.isAuthorOfPublication ecd5c807-37b2-4c20-a42b-133bc166cbc0
relation.isAuthorOfPublication.latestForDiscovery ecd5c807-37b2-4c20-a42b-133bc166cbc0

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1-s2.0-S1386505621002021-main.pdf
Size:
5.89 MB
Format:
Adobe Portable Document Format