Improved Social Spider Algorithm for Large Scale Optimization

dc.contributor.author Baş, Emine
dc.contributor.author Ülker, Erkan
dc.date.accessioned 2021-12-13T10:23:54Z
dc.date.available 2021-12-13T10:23:54Z
dc.date.issued 2021
dc.description.abstract Heuristic algorithms can give optimal solutions for low, middle, and large scale optimization problems in an acceptable time. The social spider algorithm (SSA) is one of the recent meta-heuristic algorithms that imitate the behaviors of the spider to perform global optimization. The original study of this algorithm was proposed to solve low scale continuous problems, and it is not be solved to middle and large scale continuous problems. In this paper, we have improved the SSA and have solved middle and large scale continuous problems, too. By adding two new techniques to the original SSA, the performance of the original SSA has been improved and it is named as an improved SSA (ISSA). In this paper, various unimodal and multimodal standard benchmark functions for low, middle, and large-scale optimization are studied for displaying the performance of ISSA. ISSA's performance is also compared with the well-known and new evolutionary methods in the literature. Test results show that ISSA displays good performance and can be used as an alternative method for large scale optimization. en_US
dc.identifier.doi 10.1007/s10462-020-09931-5
dc.identifier.issn 0269-2821
dc.identifier.issn 1573-7462
dc.identifier.scopus 2-s2.0-85095703609
dc.identifier.uri https://doi.org/10.1007/s10462-020-09931-5
dc.identifier.uri https://hdl.handle.net/20.500.13091/237
dc.language.iso en en_US
dc.publisher SPRINGER en_US
dc.relation.ispartof ARTIFICIAL INTELLIGENCE REVIEW en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Heuristic Methods en_US
dc.subject Optimization en_US
dc.subject Social Spider Algorithm en_US
dc.subject Large-Scale Dimension en_US
dc.subject Ant Colony Optimization en_US
dc.subject Global Optimization en_US
dc.subject Firefly Algorithm en_US
dc.subject Swarm Optimization en_US
dc.subject Intelligence en_US
dc.subject Evolution en_US
dc.subject Selection en_US
dc.subject Behavior en_US
dc.title Improved Social Spider Algorithm for Large Scale Optimization en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id emine, BAS/0000-0003-4322-6010
gdc.author.scopusid 57213265310
gdc.author.scopusid 23393979800
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
gdc.description.endpage 3574 en_US
gdc.description.issue 5 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 3539 en_US
gdc.description.volume 54 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W3102918160
gdc.identifier.wos WOS:000587949500002
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 12.0
gdc.oaire.influence 3.1512133E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 1.4678109E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0209 industrial biotechnology
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 2.34975278
gdc.openalex.normalizedpercentile 0.9
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 14
gdc.plumx.crossrefcites 12
gdc.plumx.mendeley 13
gdc.plumx.scopuscites 19
gdc.scopus.citedcount 18
gdc.virtual.author Ülker, Erkan
gdc.virtual.author Baş, Emine
gdc.wos.citedcount 19
relation.isAuthorOfPublication ecd5c807-37b2-4c20-a42b-133bc166cbc0
relation.isAuthorOfPublication 86ee6f35-5a88-4538-8831-6b12c57a1ee9
relation.isAuthorOfPublication.latestForDiscovery ecd5c807-37b2-4c20-a42b-133bc166cbc0

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
s10462-020-09931-5.pdf
Size:
2.21 MB
Format:
Adobe Portable Document Format