A Novel Diversity Guided Galactic Swarm Optimization With Feedback Mechanism

dc.contributor.author Uymaz, Oğuzhan
dc.contributor.author Türkoğlu, Bahaeddin
dc.contributor.author Kaya, Ersin
dc.contributor.author Asuroglu, Tunc
dc.date.accessioned 2024-09-22T13:32:58Z
dc.date.available 2024-09-22T13:32:58Z
dc.date.issued 2024
dc.description.abstract Galactic Swarm Optimization (GSO) is an optimization method inspired by the movements of stars and star clusters in the galaxy. This method aims to find the best solution in two phases using other known optimization methods. The first phase explores the search space, while the second phase tries to refine the best solution. In GSO, the population of the best individuals obtained from the first phase is used as the initial population for the second phase. This process is repeated until the stopping criterion is met. Although the knowledge obtained from the first phase is transferred to the second phase in GSO, there is no knowledge transfer from the second phase to the first phase. In this study, we propose a modification where the knowledge obtained in the second phase is transferred back to the first phase. Additionally, the Particle Swarm Optimization (PSO) method, used as the search method in the original study, has a fast convergence problem, which hinders an effective discovery process in the first phase of GSO. To address this, the proposed diversity-guided modification regulates population diversity and enhances exploration. To demonstrate the performance of the proposed method, twenty-six traditional benchmark functions and three engineering design problems were used. The proposed method was compared with the original GSO and six current optimization methods. The results of the experimental study were analyzed using statistical tests. The experimental results and analyses show that the proposed method performs successfully. en_US
dc.identifier.doi 10.1109/ACCESS.2024.3438104
dc.identifier.issn 2169-3536
dc.identifier.scopus 2-s2.0-85200812540
dc.identifier.uri https://doi.org/10.1109/ACCESS.2024.3438104
dc.identifier.uri https://hdl.handle.net/20.500.13091/6254
dc.language.iso en en_US
dc.publisher Ieee-Inst Electrical Electronics Engineers Inc en_US
dc.relation.ispartof IEEE Access en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Statistics en_US
dc.subject Sociology en_US
dc.subject Particle swarm optimization en_US
dc.subject Metaheuristics en_US
dc.subject Classification algorithms en_US
dc.subject Stars en_US
dc.subject Search problems en_US
dc.subject Galactic swarm optimization en_US
dc.subject population diversity en_US
dc.subject metaheuristic optimization en_US
dc.subject Population Diversity en_US
dc.subject Algorithm en_US
dc.subject Evolution en_US
dc.subject Tests en_US
dc.title A Novel Diversity Guided Galactic Swarm Optimization With Feedback Mechanism en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Turkoglu, Bahaeddin/0000-0003-0255-8422
gdc.author.id Asuroglu, Tunc/0000-0003-4153-0764
gdc.author.institutional
gdc.author.scopusid 59253158000
gdc.author.scopusid 57218160917
gdc.author.scopusid 36348487700
gdc.author.scopusid 56780249800
gdc.author.wosid KAYA, Ersin/V-7558-2019
gdc.author.wosid turkoglu, bahaeddin/AFM-7521-2022
gdc.author.wosid Asuroglu, Tunc/ITV-2441-2023
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department KTÜN en_US
gdc.description.departmenttemp [Uymaz, Oguzhan] Konya Tech Univ, Dept Software Engn, TR-42250 Konya, Turkiye; [Turkoglu, Bahaeddin] Ankara Univ, Dept Artificial Intelligence & Data Engn, TR-06830 Ankara, Turkiye; [Kaya, Ersin] Konya Tech Univ, Dept Comp Engn, TR-42250 Konya, Turkiye; [Asuroglu, Tunc] Tampere Univ, Fac Med & Hlth Technol, Tampere 33720, Finland; [Asuroglu, Tunc] VTT Tech Res Ctr Finland, Tampere 33101, Finland en_US
gdc.description.endpage 108175 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 108154 en_US
gdc.description.volume 12 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W4401327872
gdc.identifier.wos WOS:001288397300001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.562452E-9
gdc.oaire.isgreen true
gdc.oaire.keywords population diversity
gdc.oaire.keywords Galactic swarm optimization
gdc.oaire.keywords 318
gdc.oaire.keywords metaheuristic optimization
gdc.oaire.keywords Electrical engineering. Electronics. Nuclear engineering
gdc.oaire.keywords TK1-9971
gdc.oaire.popularity 3.2599792E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration International
gdc.openalex.fwci 3.81725211
gdc.openalex.normalizedpercentile 0.91
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.mendeley 3
gdc.plumx.newscount 1
gdc.plumx.scopuscites 6
gdc.scopus.citedcount 6
gdc.virtual.author Kaya, Ersin
gdc.virtual.author Uymaz, Oğuzhan
gdc.wos.citedcount 6
relation.isAuthorOfPublication 6b459b99-eed9-45fb-b42f-50fbb4ee7090
relation.isAuthorOfPublication 8d4310ed-19db-44d9-8de3-5e7775e04d06
relation.isAuthorOfPublication.latestForDiscovery 6b459b99-eed9-45fb-b42f-50fbb4ee7090

Files