Boosting Galactic Swarm Optimization With Abc
| dc.contributor.author | Kaya, Ersin | |
| dc.contributor.author | Uymaz, Sait Ali | |
| dc.contributor.author | Koçer, Barış | |
| dc.date.accessioned | 2021-12-13T10:30:01Z | |
| dc.date.available | 2021-12-13T10:30:01Z | |
| dc.date.issued | 2019 | |
| dc.description.abstract | Galactic swarm optimization (GSO) is a new global metaheuristic optimization algorithm. It manages multiple sub-populations to explore search space efficiently. Then superswarm is recruited from the best-found solutions. Actually, GSO is a framework. In this framework, search method in both sub-population and superswarm can be selected differently. In the original work, particle swarm optimization is used as the search method in both phases. In this work, performance of the state of the art and well known methods are tested under GSO framework. Experiments show that performance of artificial bee colony algorithm under the GSO framework is the best among the other algorithms both under GSO framework and original algorithms. | en_US |
| dc.identifier.doi | 10.1007/s13042-018-0878-6 | |
| dc.identifier.issn | 1868-8071 | |
| dc.identifier.issn | 1868-808X | |
| dc.identifier.scopus | 2-s2.0-85070677925 | |
| dc.identifier.uri | https://doi.org/10.1007/s13042-018-0878-6 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.13091/808 | |
| dc.language.iso | en | en_US |
| dc.publisher | SPRINGER HEIDELBERG | en_US |
| dc.relation.ispartof | INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Galactic Swarm Optimization | en_US |
| dc.subject | Artificial Bee Colony Algorithm | en_US |
| dc.subject | Swarm Intelligence | en_US |
| dc.subject | Metaheuristic Optimization Algorithm | en_US |
| dc.subject | Bee Colony Algorithm | en_US |
| dc.subject | Differential Evolution Algorithm | en_US |
| dc.subject | Artificial Algae Algorithm | en_US |
| dc.subject | Particle Swarm | en_US |
| dc.subject | Global Optimization | en_US |
| dc.subject | Intelligence | en_US |
| dc.title | Boosting Galactic Swarm Optimization With Abc | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | KAYA, Ersin/0000-0001-5668-5078 | |
| gdc.author.scopusid | 36348487700 | |
| gdc.author.scopusid | 56572779600 | |
| gdc.author.scopusid | 35786168500 | |
| gdc.author.wosid | UYMAZ, Sait Ali/ABA-7308-2020 | |
| gdc.author.wosid | KAYA, Ersin/V-7558-2019 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
| gdc.description.endpage | 2419 | en_US |
| gdc.description.issue | 9 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q2 | |
| gdc.description.startpage | 2401 | en_US |
| gdc.description.volume | 10 | en_US |
| gdc.description.wosquality | Q3 | |
| gdc.identifier.openalex | W2892860078 | |
| gdc.identifier.wos | WOS:000481418600013 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 3.0 | |
| gdc.oaire.influence | 2.8979954E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.popularity | 9.615055E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.openalex.collaboration | National | |
| gdc.openalex.fwci | 1.38993721 | |
| gdc.openalex.normalizedpercentile | 0.84 | |
| gdc.opencitations.count | 12 | |
| gdc.plumx.mendeley | 10 | |
| gdc.plumx.scopuscites | 13 | |
| gdc.scopus.citedcount | 13 | |
| gdc.virtual.author | Kaya, Ersin | |
| gdc.virtual.author | Uymaz, Sait Ali | |
| gdc.wos.citedcount | 11 | |
| relation.isAuthorOfPublication | 6b459b99-eed9-45fb-b42f-50fbb4ee7090 | |
| relation.isAuthorOfPublication | 83ffad2c-51a1-41f6-8ede-6d95ca8e9ac0 | |
| relation.isAuthorOfPublication.latestForDiscovery | 6b459b99-eed9-45fb-b42f-50fbb4ee7090 |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- s13042-018-0878-6.pdf
- Size:
- 2.58 MB
- Format:
- Adobe Portable Document Format
