Comprehensive Comparison of Deep Learning Architectures for Stroke Classification From CT Images

dc.contributor.author Yanar, Erdem
dc.contributor.author Kutan, Furkan
dc.contributor.author Ayturan, Kubilay
dc.contributor.author Kutbay, Uǧurhan
dc.contributor.author Hardalaç, Firat
dc.contributor.author Dogan, Mehmet Selman
dc.contributor.author Algin, Oktay
dc.date.accessioned 2025-10-10T15:20:37Z
dc.date.available 2025-10-10T15:20:37Z
dc.date.issued 2025
dc.description Isik University en_US
dc.description.abstract Stroke, a leading cause of death and permanent disability worldwide, is classified into ischemic and hemorrhagic types. Accurate and timely classification from CT images is critical for effective treatment in emergency care. This study compares modern deep learning models ResNet, ViT, EfficientNet, Inception, ResNeXt, MobileNet, ConvNeXt, ConvNeXtV2, and DaViT - for classifying stroke (ischemic, hemorrhagic) and non-stroke cases from CT images. Models were evaluated using the 2021 Teknofest stroke dataset based on accuracy, precision, specificity, and computational efficiency. Results show that while advanced models like ViT and ConvNeXtV2 offer high performance, lightweight architectures such as MobileNet (F1-score: 97.59%) are clinically viable and ideal for resource-limited environments. © 2025 Elsevier B.V., All rights reserved. en_US
dc.identifier.doi 10.1109/SIU66497.2025.11111984
dc.identifier.isbn 9798331566555
dc.identifier.scopus 2-s2.0-105015375310
dc.identifier.uri https://doi.org/10.1109/SIU66497.2025.11111984
dc.identifier.uri https://hdl.handle.net/20.500.13091/10869
dc.language.iso tr en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof -- 33rd IEEE Conference on Signal Processing and Communications Applications, SIU 2025 -- Istanbul; Isik University Sile Campus -- 211450 en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Convolutional Neural Networks en_US
dc.subject CT Imaging en_US
dc.subject Deep Learning en_US
dc.subject Stroke Detection en_US
dc.subject Computerized Tomography en_US
dc.subject Convolutional Neural Networks en_US
dc.subject Deep Neural Networks en_US
dc.subject Learning Systems en_US
dc.subject Medical Imaging en_US
dc.subject Causes of Death en_US
dc.subject Classifieds en_US
dc.subject Comprehensive Comparisons en_US
dc.subject Convolutional Neural Network en_US
dc.subject CT Image en_US
dc.subject CT Imaging en_US
dc.subject Deep Learning en_US
dc.subject Emergency Care en_US
dc.subject Learning Architectures en_US
dc.subject Stroke Detection en_US
dc.subject Computational Efficiency en_US
dc.title Comprehensive Comparison of Deep Learning Architectures for Stroke Classification From CT Images en_US
dc.title.alternative BT Görüntülerinden İnme Sınıflandırması için Derin Öğrenme Mimarilerinin Kapsamlı Karşılaştırması en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.scopusid 57195217306
gdc.author.scopusid 58505406500
gdc.author.scopusid 57226791239
gdc.author.scopusid 55257135600
gdc.author.scopusid 6602517195
gdc.author.scopusid 60093610500
gdc.author.scopusid 60093610500
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Konya Technical University en_US
gdc.description.departmenttemp [Yanar] Erdem, ASELSAN A.Ş., Yenimahalle, Turkey; [Kutan] Furkan, ASELSAN A.Ş., Yenimahalle, Turkey; [Ayturan] Kubilay, Elektrik-Elektronik Mühendisliǧi Bölümü, Gazi Üniversitesi, Ankara, Turkey; [Kutbay] Uǧurhan, Elektrik-Elektronik Mühendisliǧi Bölümü, Gazi Üniversitesi, Ankara, Turkey; [Hardalaç] Firat, Elektrik-Elektronik Mühendisliǧi Bölümü, Gazi Üniversitesi, Ankara, Turkey; [Dogan] Mehmet Selman, Elektrik-Elektronik Mühendisliği Bölümü, Konya Technical University, Konya, Turkey; [Algin] Oktay, Dahili Tip Bilimleri Bölümü, Ankara Üniversitesi, Ankara, Turkey en_US
gdc.description.endpage 4
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 1
gdc.description.wosquality N/A
gdc.identifier.openalex W4413462041
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5349236E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.8669784E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.38
gdc.opencitations.count 0
gdc.plumx.mendeley 1
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0

Files