Boosting the Oversampling Methods Based on Differential Evolution Strategies for Imbalanced Learning

dc.contributor.author Korkmaz, Sedat
dc.contributor.author Sahman, Mehmet Akif
dc.contributor.author Çınar, Ahmet Cevahir
dc.contributor.author Kaya, Ersin
dc.date.accessioned 2022-01-30T17:32:55Z
dc.date.available 2022-01-30T17:32:55Z
dc.date.issued 2021
dc.description.abstract The class imbalance problem is a challenging problem in the data mining area. To overcome the low classification performance related to imbalanced datasets, sampling strategies are used for balancing the datasets. Oversampling is a technique that increases the minority class samples in various proportions. In this work, these 16 different DE strategies are used for oversampling the imbalanced datasets for better classification. The main aim of this work is to determine the best strategy in terms of Area Under the receiver operating characteristic (ROC) Curve (AUC) and Geometric Mean (G-Mean) metrics. 44 imbalanced datasets are used in experiments. Support Vector Machines (SVM), k-Nearest Neighbor (kNN), and Decision Tree (DT) are used as a classifier in the experiments. The best results are produced by 6th Debohid Strategy (DSt6), 1th Debohid Strategy (DSt1), and 3th Debohid Strategy (DSt3) by using kNN, DT, and SVM classifiers, respectively. The obtained results outperform the 9 state-of-the-art oversampling methods in terms of AUC and G-Mean metrics (C) 2021 Elsevier B.V. All rights reserved. en_US
dc.identifier.doi 10.1016/j.asoc.2021.107787
dc.identifier.issn 1568-4946
dc.identifier.issn 1872-9681
dc.identifier.scopus 2-s2.0-85113352660
dc.identifier.uri https://doi.org/10.1016/j.asoc.2021.107787
dc.identifier.uri https://hdl.handle.net/20.500.13091/1701
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.ispartof Applied Soft Computing en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Imbalanced Datasets en_US
dc.subject Differential Evolution en_US
dc.subject Oversampling en_US
dc.subject Imbalanced Learning en_US
dc.subject Class Imbalance en_US
dc.subject Differential Evolution Strategies en_US
dc.subject Preprocessing Method en_US
dc.subject Global Optimization en_US
dc.subject Software Tool en_US
dc.subject Smote en_US
dc.subject Classification en_US
dc.subject Algorithms en_US
dc.subject Keel en_US
dc.title Boosting the Oversampling Methods Based on Differential Evolution Strategies for Imbalanced Learning en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Sahman, Mehmet Akif/0000-0002-1718-3777
gdc.author.wosid Korkmaz, Sedat/G-5064-2019
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 107787
gdc.description.volume 112 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W3189214361
gdc.identifier.wos WOS:000722501300001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 15.0
gdc.oaire.influence 3.4597964E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.0129695E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 2.39876078
gdc.openalex.normalizedpercentile 0.91
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 18
gdc.plumx.crossrefcites 23
gdc.plumx.mendeley 25
gdc.plumx.scopuscites 25
gdc.scopus.citedcount 24
gdc.virtual.author Kaya, Ersin
gdc.virtual.author Korkmaz, Sedat
gdc.wos.citedcount 21
relation.isAuthorOfPublication 6b459b99-eed9-45fb-b42f-50fbb4ee7090
relation.isAuthorOfPublication 3a35d7d4-4f08-416f-bbd9-546d6a050371
relation.isAuthorOfPublication.latestForDiscovery 6b459b99-eed9-45fb-b42f-50fbb4ee7090

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1-s2.0-S1568494621007080-main.pdf
Size:
1.79 MB
Format:
Adobe Portable Document Format