A-Who: Stagnation-Based Adaptive Metaheuristic for Cloud Task Scheduling Resilient to DDoS Attacks

No Thumbnail Available

Date

2025

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI

Open Access Color

GOLD

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Average

Research Projects

Journal Issue

Abstract

Task scheduling in cloud computing becomes significantly more challenging under Distributed Denial-of-Service (DDoS) attacks, as malicious workload injection disrupts resource availability and degrades Quality of Service (QoS). To address this issue, this study proposes an improved Wild Horse Optimizer (A-WHO) that incorporates a stagnation detection mechanism and a stagnation-driven adaptive leader perturbation strategy. The proposed mechanism dynamically applies a noise-guided perturbation into the stallion position only when no improvement is observed over a predefined threshold, enabling A-WHO to escape local optima without modifying the standard behavior of WHO in normal iterations. In addition, a DDoS-aware CloudSim environment is developed by generating attacker virtual machines and high-MI malicious cloudlets to emulate realistic resource exhaustion scenarios. A-WHO's performance is assessed using makespan, SLA violation rate, each of the QoS metrics, and energy consumption on normal and DDoS conditions. The experimental results indicate that A-WHO achieves the best absolute makespan and QoS metrics during an attack and competitive results under normal conditions. In comparison with the WHO, PSO, ABC, GA, SCA, and CSOA, the proposed approach demonstrates improved robustness and greater resilience to resource degradation attacks. These findings indicate that integrating stagnation-aware diversification into metaheuristic schedulers represents a promising direction for securing cloud task scheduling frameworks.

Description

Keywords

Cloud Task Scheduling, Cloud Computing, Metaheuristic Algorithms, DDoS Attacks

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q2

Scopus Q

Q2
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

Electronics

Volume

14

Issue

21

Start Page

4337

End Page

PlumX Metrics
Citations

Scopus : 0

Google Scholar Logo
Google Scholar™

Sustainable Development Goals

SDG data could not be loaded because of an error. Please refresh the page or try again later.