Flow Control Over a Circular Cylinder Using Vortex Generators: Particle Image Velocimetry Analysis and Machine-Learning Prediction of Flow Characteristics
| dc.contributor.author | Okbaz, A. | |
| dc.contributor.author | Aksoy, M.H. | |
| dc.contributor.author | Kurtulmuş, N. | |
| dc.contributor.author | Çolak, A.B. | |
| dc.date.accessioned | 2023-12-09T06:55:16Z | |
| dc.date.available | 2023-12-09T06:55:16Z | |
| dc.date.issued | 2023 | |
| dc.description.abstract | Controlling the flow around circular cylinders is crucial to mitigate vortex-induced vibrations and prevent structural damage in a range of applications, such as marine and offshore engineering, tall buildings, long-span bridges, transport ships, and heat exchangers. In this study, we aimed to control the turbulent flow structure around a circular cylinder by placing vortex generators (VGs). We examined the flow structure using particle image velocimetry (PIV). This enabled quantitative data acquisition, intuitive flow visualization, and drag coefficient determination from PIV data. We developed artificial neural network (ANN) models that successfully predict both mean and instantaneous flow characteristics for different scenarios. Our findings show that using VGs elongated the wake and increased vortex formation lengths while reducing velocity fluctuations and the drag coefficient. A minimum drag coefficient of 0.718 was achieved with VGs oriented at α = 60° & β = 60°, reducing the drag by 35.3% compared to the bare cylinder. The drag coefficient exhibited a substantial inverse correlation with both wake and vortex formation lengths. This study is significant for controlling flow structures, providing detailed insights into the near-wake region, and highlighting the potential applications of machine learning in fluid dynamics. © 2023 Elsevier Ltd | en_US |
| dc.description.sponsorship | Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK: 1059B192201266, 2022 | en_US |
| dc.description.sponsorship | Abdulkerim Okbaz expresses gratitude to the TUBITAK–2219 International Postdoctoral Research Fellowship Program, supported by The Scientific and Technological Research Council of Türkiye, for funding a segment of this study carried out at the Georgia Institute of Technology (2022 , Grant# 1059B192201266 ). | en_US |
| dc.identifier.doi | 10.1016/j.oceaneng.2023.116055 | |
| dc.identifier.issn | 0029-8018 | |
| dc.identifier.scopus | 2-s2.0-85175001254 | |
| dc.identifier.uri | https://doi.org/10.1016/j.oceaneng.2023.116055 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.13091/4864 | |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier Ltd | en_US |
| dc.relation.ispartof | Ocean Engineering | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Bluff body | en_US |
| dc.subject | Flow control | en_US |
| dc.subject | Machine learning | en_US |
| dc.subject | Particle image velocimetry | en_US |
| dc.subject | Turbulence | en_US |
| dc.subject | Vortex generators | en_US |
| dc.subject | Circular cylinders | en_US |
| dc.subject | Data acquisition | en_US |
| dc.subject | Data visualization | en_US |
| dc.subject | Drag coefficient | en_US |
| dc.subject | Flow control | en_US |
| dc.subject | Flow structure | en_US |
| dc.subject | Flow visualization | en_US |
| dc.subject | Marine applications | en_US |
| dc.subject | Neural networks | en_US |
| dc.subject | Offshore oil well production | en_US |
| dc.subject | Tall buildings | en_US |
| dc.subject | Velocity measurement | en_US |
| dc.subject | Wakes | en_US |
| dc.subject | Bluff body | en_US |
| dc.subject | Flow around circular cylinder | en_US |
| dc.subject | Flow characteristic | en_US |
| dc.subject | Image velocimetry | en_US |
| dc.subject | Machine-learning | en_US |
| dc.subject | Particle image velocimetry | en_US |
| dc.subject | Particle image velocimetry analysis | en_US |
| dc.subject | Particle images | en_US |
| dc.subject | Vortex formation | en_US |
| dc.subject | Vortex generators | en_US |
| dc.subject | Machine learning | en_US |
| dc.subject | artificial neural network | en_US |
| dc.subject | cylinder | en_US |
| dc.subject | data acquisition | en_US |
| dc.subject | drag coefficient | en_US |
| dc.subject | flow control | en_US |
| dc.subject | fluid dynamics | en_US |
| dc.subject | machine learning | en_US |
| dc.subject | offshore engineering | en_US |
| dc.subject | particle image velocimetry | en_US |
| dc.subject | prediction | en_US |
| dc.subject | quantitative analysis | en_US |
| dc.subject | turbulence | en_US |
| dc.subject | vortex flow | en_US |
| dc.title | Flow Control Over a Circular Cylinder Using Vortex Generators: Particle Image Velocimetry Analysis and Machine-Learning Prediction of Flow Characteristics | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | … | |
| gdc.author.scopusid | 55256278300 | |
| gdc.author.scopusid | 55823803400 | |
| gdc.author.scopusid | 57197715331 | |
| gdc.author.scopusid | 57216657788 | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | KTÜN | en_US |
| gdc.description.departmenttemp | Okbaz, A., Department of Mechanical Engineering, Faculty of Engineering, Dogus University, Istanbul, 34755, Turkey, School of Materials Science and Engineering, Georgia Institute of Technology, GA, Atlanta, 30332, United States; Aksoy, M.H., Department of Mechanical Engineering, Faculty of Engineering, Konya Technical University, Konya, 4200, Turkey; Kurtulmuş, N., Department of Mechanical Engineering, Faculty of Engineering, Adana Alparslan Türkes Science and Technology University, Adana, 01250, Turkey; Çolak, A.B., Information Technologies Application and Research Center, Istanbul Ticaret University, Istanbul, 34445, Turkey | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 116055 | |
| gdc.description.volume | 288 | en_US |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W4387993884 | |
| gdc.index.type | Scopus | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 18.0 | |
| gdc.oaire.influence | 3.0501304E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Vortex Generators | |
| gdc.oaire.keywords | Separation Control | |
| gdc.oaire.keywords | Heat-Transfer | |
| gdc.oaire.keywords | Flow Control | |
| gdc.oaire.keywords | Vortices | |
| gdc.oaire.keywords | Particle image velocimetry | |
| gdc.oaire.keywords | Bluff body | |
| gdc.oaire.keywords | Drag | |
| gdc.oaire.keywords | Machine Learning | |
| gdc.oaire.keywords | Turbulence | |
| gdc.oaire.keywords | Vortex generators | |
| gdc.oaire.keywords | Flow control | |
| gdc.oaire.keywords | Particle Image Velocimetry | |
| gdc.oaire.keywords | Boundary-Layer | |
| gdc.oaire.keywords | Bluff body, Flow control, Turbulence, Machine learning, Particle image velocimetry, Vortex generators | |
| gdc.oaire.keywords | Wake | |
| gdc.oaire.keywords | Machine learning | |
| gdc.oaire.keywords | Region | |
| gdc.oaire.keywords | Smooth | |
| gdc.oaire.keywords | Bluff Body | |
| gdc.oaire.popularity | 1.3522508E-8 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.oaire.sciencefields | 0203 mechanical engineering | |
| gdc.oaire.sciencefields | 0103 physical sciences | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 6.38412329 | |
| gdc.openalex.normalizedpercentile | 0.96 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 10 | |
| gdc.plumx.crossrefcites | 15 | |
| gdc.plumx.mendeley | 16 | |
| gdc.plumx.scopuscites | 20 | |
| gdc.scopus.citedcount | 19 | |
| gdc.virtual.author | Aksoy, Muharrem Hilmi | |
| relation.isAuthorOfPublication | 71cdeba0-ed5a-451d-9e38-beec3675dda5 | |
| relation.isAuthorOfPublication.latestForDiscovery | 71cdeba0-ed5a-451d-9e38-beec3675dda5 |
