Flow Control Over a Circular Cylinder Using Vortex Generators: Particle Image Velocimetry Analysis and Machine-Learning Prediction of Flow Characteristics

dc.contributor.author Okbaz, A.
dc.contributor.author Aksoy, M.H.
dc.contributor.author Kurtulmuş, N.
dc.contributor.author Çolak, A.B.
dc.date.accessioned 2023-12-09T06:55:16Z
dc.date.available 2023-12-09T06:55:16Z
dc.date.issued 2023
dc.description.abstract Controlling the flow around circular cylinders is crucial to mitigate vortex-induced vibrations and prevent structural damage in a range of applications, such as marine and offshore engineering, tall buildings, long-span bridges, transport ships, and heat exchangers. In this study, we aimed to control the turbulent flow structure around a circular cylinder by placing vortex generators (VGs). We examined the flow structure using particle image velocimetry (PIV). This enabled quantitative data acquisition, intuitive flow visualization, and drag coefficient determination from PIV data. We developed artificial neural network (ANN) models that successfully predict both mean and instantaneous flow characteristics for different scenarios. Our findings show that using VGs elongated the wake and increased vortex formation lengths while reducing velocity fluctuations and the drag coefficient. A minimum drag coefficient of 0.718 was achieved with VGs oriented at α = 60° & β = 60°, reducing the drag by 35.3% compared to the bare cylinder. The drag coefficient exhibited a substantial inverse correlation with both wake and vortex formation lengths. This study is significant for controlling flow structures, providing detailed insights into the near-wake region, and highlighting the potential applications of machine learning in fluid dynamics. © 2023 Elsevier Ltd en_US
dc.description.sponsorship Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK: 1059B192201266, 2022 en_US
dc.description.sponsorship Abdulkerim Okbaz expresses gratitude to the TUBITAK–2219 International Postdoctoral Research Fellowship Program, supported by The Scientific and Technological Research Council of Türkiye, for funding a segment of this study carried out at the Georgia Institute of Technology (2022 , Grant# 1059B192201266 ). en_US
dc.identifier.doi 10.1016/j.oceaneng.2023.116055
dc.identifier.issn 0029-8018
dc.identifier.scopus 2-s2.0-85175001254
dc.identifier.uri https://doi.org/10.1016/j.oceaneng.2023.116055
dc.identifier.uri https://hdl.handle.net/20.500.13091/4864
dc.language.iso en en_US
dc.publisher Elsevier Ltd en_US
dc.relation.ispartof Ocean Engineering en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Bluff body en_US
dc.subject Flow control en_US
dc.subject Machine learning en_US
dc.subject Particle image velocimetry en_US
dc.subject Turbulence en_US
dc.subject Vortex generators en_US
dc.subject Circular cylinders en_US
dc.subject Data acquisition en_US
dc.subject Data visualization en_US
dc.subject Drag coefficient en_US
dc.subject Flow control en_US
dc.subject Flow structure en_US
dc.subject Flow visualization en_US
dc.subject Marine applications en_US
dc.subject Neural networks en_US
dc.subject Offshore oil well production en_US
dc.subject Tall buildings en_US
dc.subject Velocity measurement en_US
dc.subject Wakes en_US
dc.subject Bluff body en_US
dc.subject Flow around circular cylinder en_US
dc.subject Flow characteristic en_US
dc.subject Image velocimetry en_US
dc.subject Machine-learning en_US
dc.subject Particle image velocimetry en_US
dc.subject Particle image velocimetry analysis en_US
dc.subject Particle images en_US
dc.subject Vortex formation en_US
dc.subject Vortex generators en_US
dc.subject Machine learning en_US
dc.subject artificial neural network en_US
dc.subject cylinder en_US
dc.subject data acquisition en_US
dc.subject drag coefficient en_US
dc.subject flow control en_US
dc.subject fluid dynamics en_US
dc.subject machine learning en_US
dc.subject offshore engineering en_US
dc.subject particle image velocimetry en_US
dc.subject prediction en_US
dc.subject quantitative analysis en_US
dc.subject turbulence en_US
dc.subject vortex flow en_US
dc.title Flow Control Over a Circular Cylinder Using Vortex Generators: Particle Image Velocimetry Analysis and Machine-Learning Prediction of Flow Characteristics en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional
gdc.author.scopusid 55256278300
gdc.author.scopusid 55823803400
gdc.author.scopusid 57197715331
gdc.author.scopusid 57216657788
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department KTÜN en_US
gdc.description.departmenttemp Okbaz, A., Department of Mechanical Engineering, Faculty of Engineering, Dogus University, Istanbul, 34755, Turkey, School of Materials Science and Engineering, Georgia Institute of Technology, GA, Atlanta, 30332, United States; Aksoy, M.H., Department of Mechanical Engineering, Faculty of Engineering, Konya Technical University, Konya, 4200, Turkey; Kurtulmuş, N., Department of Mechanical Engineering, Faculty of Engineering, Adana Alparslan Türkes Science and Technology University, Adana, 01250, Turkey; Çolak, A.B., Information Technologies Application and Research Center, Istanbul Ticaret University, Istanbul, 34445, Turkey en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 116055
gdc.description.volume 288 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W4387993884
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 18.0
gdc.oaire.influence 3.0501304E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Vortex Generators
gdc.oaire.keywords Separation Control
gdc.oaire.keywords Heat-Transfer
gdc.oaire.keywords Flow Control
gdc.oaire.keywords Vortices
gdc.oaire.keywords Particle image velocimetry
gdc.oaire.keywords Bluff body
gdc.oaire.keywords Drag
gdc.oaire.keywords Machine Learning
gdc.oaire.keywords Turbulence
gdc.oaire.keywords Vortex generators
gdc.oaire.keywords Flow control
gdc.oaire.keywords Particle Image Velocimetry
gdc.oaire.keywords Boundary-Layer
gdc.oaire.keywords Bluff body, Flow control, Turbulence, Machine learning, Particle image velocimetry, Vortex generators
gdc.oaire.keywords Wake
gdc.oaire.keywords Machine learning
gdc.oaire.keywords Region
gdc.oaire.keywords Smooth
gdc.oaire.keywords Bluff Body
gdc.oaire.popularity 1.3522508E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 01 natural sciences
gdc.oaire.sciencefields 0203 mechanical engineering
gdc.oaire.sciencefields 0103 physical sciences
gdc.openalex.collaboration International
gdc.openalex.fwci 6.38412329
gdc.openalex.normalizedpercentile 0.96
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 10
gdc.plumx.crossrefcites 15
gdc.plumx.mendeley 16
gdc.plumx.scopuscites 20
gdc.scopus.citedcount 19
gdc.virtual.author Aksoy, Muharrem Hilmi
relation.isAuthorOfPublication 71cdeba0-ed5a-451d-9e38-beec3675dda5
relation.isAuthorOfPublication.latestForDiscovery 71cdeba0-ed5a-451d-9e38-beec3675dda5

Files