Machine Learning Based Detection of Depression From Task-Based Fmri Using Weighted-3d Denoising Method

dc.contributor.author Özmen, Güzin
dc.contributor.author Özsen, Seral
dc.contributor.author Paksoy, Yahya
dc.contributor.author Güler, Özkan
dc.contributor.author Tekdemir, Rukiye
dc.date.accessioned 2023-08-03T19:00:10Z
dc.date.available 2023-08-03T19:00:10Z
dc.date.issued 2023
dc.description Article; Early Access en_US
dc.description.abstract Depression has become an important public health problem in recent years because the probability of a depressive episode in a person's entire life is generally between 18-20%. Neuroimaging techniques investigate diagnostic biomarkers in depression disorders and support traditional communication-based diagnosis in psychiatry. The quality of the brain images used in functional MRI (fMRI), and the design of decision support systems using these images are essential for accurate diagnosis. The Gaussian smoothing for fMRI preprocessing blurs the image for statistical analysis but is inadequate because image detail is lost during filtering, leading to poor classification results. We argue that the weighted-3 Dimensional-Discrete Wavelet Transform (weighted-3D-DWT) denoising approach instead of Gaussian smoothing for task-based fMRI. The activation maps show differences in intensity values in the cluster size of voxels in the mood-related regions between patients and control subjects (p<0.05). Thus, we classify depression disorders using a machine learning approach and improve the classification accuracy using weighted-3D-DWT. The classification results show that weighted-3D- DWT with Random Forest and 10-fold cross-validation achieves 96.4% accuracy, while Gaussian Smoothing with a Support Vector Machine achieves 83.9% classification accuracy. Classification accuracy increases to 97.3% when 30 components are used with principal component analysis. Our results show that an fMRI experiment with visual stimuli that can aid the diagnosis of depression provides significant classification accuracy using weighted-3D-DWT. en_US
dc.description.sponsorship Selcuk University [16101006] en_US
dc.description.sponsorship This work was supported by the Scientific Research Projects Coordination of Selcuk University with the project number: 16101006. en_US
dc.identifier.doi 10.1007/s11042-023-15935-4
dc.identifier.issn 1380-7501
dc.identifier.issn 1573-7721
dc.identifier.scopus 2-s2.0-85163191822
dc.identifier.uri https://doi.org/10.1007/s11042-023-15935-4
dc.identifier.uri https://hdl.handle.net/20.500.13091/4311
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof Multimedia Tools and Applications en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Depression en_US
dc.subject fMRI en_US
dc.subject 3D-Discrete wavelet transform en_US
dc.subject Machine learning en_US
dc.subject PCA en_US
dc.subject Spm en_US
dc.subject T en_US
dc.subject Pattern-Classification en_US
dc.subject Mr-Images en_US
dc.subject Neurobiological Markers en_US
dc.subject Patient Classification en_US
dc.subject Bipolar Depression en_US
dc.subject Major Depression en_US
dc.subject Emotional Faces en_US
dc.subject Activation en_US
dc.subject Vulnerability en_US
dc.subject Resilience en_US
dc.title Machine Learning Based Detection of Depression From Task-Based Fmri Using Weighted-3d Denoising Method en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id OZMEN, Guzin/0000-0003-3007-5807
gdc.author.institutional
gdc.author.scopusid 56246815200
gdc.author.scopusid 22986589400
gdc.author.scopusid 6603093321
gdc.author.scopusid 18535103200
gdc.author.scopusid 57197737236
gdc.author.wosid OZMEN, Guzin/AHB-8712-2022
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department KTÜN en_US
gdc.description.departmenttemp [Ozmen, Guzin] Selcuk Univ, Fac Technol, Dept Biomed Engn, TR-42075 Konya, Turkiye; [Ozsen, Seral] Konya Tech Univ, Fac Engn & Nat Sci, Dept Elect Elect Engn, TR-42250 Konya, Turkiye; [Paksoy, Yahya] Hamad Med Corp, Neurosci Inst, Neuroradiol Dept, Doha, Qatar; [Paksoy, Yahya] Selcuk Univ, Dept Radiol, Konya, Turkiye; [Paksoy, Yahya] Qatar Univ, Dept Neuroradiol, Doha, Qatar; [Guler, Ozkan; Tekdemir, Rukiye] Selcuk Univ, Fac Med, Dept Psychiat, Konya, Turkiye en_US
gdc.description.endpage 11829
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 11805
gdc.description.volume 83
gdc.description.wosquality Q2
gdc.identifier.openalex W4381891002
gdc.identifier.wos WOS:001019903000007
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 3.0
gdc.oaire.influence 2.5916174E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 4.3320165E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration International
gdc.openalex.fwci 0.5275455
gdc.openalex.normalizedpercentile 0.59
gdc.opencitations.count 2
gdc.plumx.mendeley 11
gdc.plumx.scopuscites 3
gdc.scopus.citedcount 2
gdc.virtual.author Özşen, Seral
gdc.wos.citedcount 1
relation.isAuthorOfPublication 0a748abb-7416-473a-972c-70aa88a8d2a3
relation.isAuthorOfPublication.latestForDiscovery 0a748abb-7416-473a-972c-70aa88a8d2a3

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
s11042-023-15935-4.pdf
Size:
1.33 MB
Format:
Adobe Portable Document Format