Multi-Stream Isolated Sign Language Recognition Based on Finger Features Derived From Pose Data
| dc.contributor.author | Akdag, Ali | |
| dc.contributor.author | Baykan, Ömer Kaan | |
| dc.date.accessioned | 2024-06-01T08:58:11Z | |
| dc.date.available | 2024-06-01T08:58:11Z | |
| dc.date.issued | 2024 | |
| dc.description.abstract | This study introduces an innovative multichannel approach that focuses on the features and configurations of fingers in isolated sign language recognition. The foundation of this approach is based on three different types of data, derived from finger pose data obtained using MediaPipe and processed in separate channels. Using these multichannel data, we trained the proposed MultiChannel-MobileNetV2 model to provide a detailed analysis of finger movements. In our study, we first subject the features extracted from all trained models to dimensionality reduction using Principal Component Analysis. Subsequently, we combine these processed features for classification using a Support Vector Machine. Furthermore, our proposed method includes processing body and facial information using MobileNetV2. Our final proposed sign language recognition method has achieved remarkable accuracy rates of 97.15%, 95.13%, 99.78%, and 95.37% on the BosphorusSign22k-general, BosphorusSign22k, LSA64, and GSL datasets, respectively. These results underscore the generalizability and adaptability of the proposed method, proving its competitive edge over existing studies in the literature. | en_US |
| dc.identifier.doi | 10.3390/electronics13081591 | |
| dc.identifier.issn | 2079-9292 | |
| dc.identifier.scopus | 2-s2.0-85191396116 | |
| dc.identifier.uri | https://doi.org/10.3390/electronics13081591 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.13091/5596 | |
| dc.language.iso | en | en_US |
| dc.publisher | MDPI | en_US |
| dc.relation.ispartof | Electronics | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | sign language recognition | en_US |
| dc.subject | deep learning | en_US |
| dc.subject | feature fusion | en_US |
| dc.title | Multi-Stream Isolated Sign Language Recognition Based on Finger Features Derived From Pose Data | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Baykan, Ömer Kaan | |
| gdc.author.scopusid | 57200269812 | |
| gdc.author.scopusid | 23090480800 | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C4 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | KTÜN | en_US |
| gdc.description.departmenttemp | [Akdag, Ali] Tokat Gaziosmanpasa Univ, Dept Comp Engn, Tasliciftlik Campus, TR-60250 Tokat, Turkiye; [Baykan, Omer Kaan] Konya Tech Univ, Dept Comp Engn, TR-42250 Konya, Turkiye | en_US |
| gdc.description.departmenttemp | [Akdag, Ali] Tokat Gaziosmanpasa Univ, Dept Comp Engn, Tasliciftlik Campus, TR-60250 Tokat, Turkiye; [Baykan, Omer Kaan] Konya Tech Univ, Dept Comp Engn, TR-42250 Konya, Turkiye | en_US |
| gdc.description.issue | 8 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q2 | |
| gdc.description.startpage | 1591 | |
| gdc.description.volume | 13 | en_US |
| gdc.description.wosquality | Q2 | |
| gdc.identifier.openalex | W4395000530 | |
| gdc.identifier.wos | WOS:001210168900001 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 16.0 | |
| gdc.oaire.influence | 4.940219E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.popularity | 1.5121591E-8 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0301 basic medicine | |
| gdc.oaire.sciencefields | 03 medical and health sciences | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.openalex.collaboration | National | |
| gdc.openalex.fwci | 11.66205057 | |
| gdc.openalex.normalizedpercentile | 0.97 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.mendeley | 19 | |
| gdc.plumx.scopuscites | 15 | |
| gdc.scopus.citedcount | 14 | |
| gdc.virtual.author | Baykan, Ömer Kaan | |
| gdc.wos.citedcount | 5 | |
| relation.isAuthorOfPublication | aea7aa1f-27e5-46d6-9fb7-317283404e6b | |
| relation.isAuthorOfPublication.latestForDiscovery | aea7aa1f-27e5-46d6-9fb7-317283404e6b |
