Multi-Stream Isolated Sign Language Recognition Based on Finger Features Derived From Pose Data

dc.contributor.author Akdag, Ali
dc.contributor.author Baykan, Ömer Kaan
dc.date.accessioned 2024-06-01T08:58:11Z
dc.date.available 2024-06-01T08:58:11Z
dc.date.issued 2024
dc.description.abstract This study introduces an innovative multichannel approach that focuses on the features and configurations of fingers in isolated sign language recognition. The foundation of this approach is based on three different types of data, derived from finger pose data obtained using MediaPipe and processed in separate channels. Using these multichannel data, we trained the proposed MultiChannel-MobileNetV2 model to provide a detailed analysis of finger movements. In our study, we first subject the features extracted from all trained models to dimensionality reduction using Principal Component Analysis. Subsequently, we combine these processed features for classification using a Support Vector Machine. Furthermore, our proposed method includes processing body and facial information using MobileNetV2. Our final proposed sign language recognition method has achieved remarkable accuracy rates of 97.15%, 95.13%, 99.78%, and 95.37% on the BosphorusSign22k-general, BosphorusSign22k, LSA64, and GSL datasets, respectively. These results underscore the generalizability and adaptability of the proposed method, proving its competitive edge over existing studies in the literature. en_US
dc.identifier.doi 10.3390/electronics13081591
dc.identifier.issn 2079-9292
dc.identifier.scopus 2-s2.0-85191396116
dc.identifier.uri https://doi.org/10.3390/electronics13081591
dc.identifier.uri https://hdl.handle.net/20.500.13091/5596
dc.language.iso en en_US
dc.publisher MDPI en_US
dc.relation.ispartof Electronics en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject sign language recognition en_US
dc.subject deep learning en_US
dc.subject feature fusion en_US
dc.title Multi-Stream Isolated Sign Language Recognition Based on Finger Features Derived From Pose Data en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Baykan, Ömer Kaan
gdc.author.scopusid 57200269812
gdc.author.scopusid 23090480800
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department KTÜN en_US
gdc.description.departmenttemp [Akdag, Ali] Tokat Gaziosmanpasa Univ, Dept Comp Engn, Tasliciftlik Campus, TR-60250 Tokat, Turkiye; [Baykan, Omer Kaan] Konya Tech Univ, Dept Comp Engn, TR-42250 Konya, Turkiye en_US
gdc.description.departmenttemp [Akdag, Ali] Tokat Gaziosmanpasa Univ, Dept Comp Engn, Tasliciftlik Campus, TR-60250 Tokat, Turkiye; [Baykan, Omer Kaan] Konya Tech Univ, Dept Comp Engn, TR-42250 Konya, Turkiye en_US
gdc.description.issue 8 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 1591
gdc.description.volume 13 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W4395000530
gdc.identifier.wos WOS:001210168900001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 16.0
gdc.oaire.influence 4.940219E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 1.5121591E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0301 basic medicine
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 11.66205057
gdc.openalex.normalizedpercentile 0.97
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.mendeley 19
gdc.plumx.scopuscites 15
gdc.scopus.citedcount 14
gdc.virtual.author Baykan, Ömer Kaan
gdc.wos.citedcount 5
relation.isAuthorOfPublication aea7aa1f-27e5-46d6-9fb7-317283404e6b
relation.isAuthorOfPublication.latestForDiscovery aea7aa1f-27e5-46d6-9fb7-317283404e6b

Files