Advancing Remote Sensing with Few-Shot Learning: A Comprehensive Review of Methods, Challenges, and Future Directions

dc.contributor.author Aslan, Muhammet Fatih
dc.contributor.author Sabanci, Kadir
dc.contributor.author Durdu, Akif
dc.contributor.author Kaousar, Rehana
dc.date.accessioned 2026-01-10T16:40:14Z
dc.date.available 2026-01-10T16:40:14Z
dc.date.issued 2025
dc.description.abstract In this review, the details and developments of few-shot learning (FSL) techniques in different remote sensing (RS) studies including change monitoring, disaster management, urban monitoring, and agriculture are discussed in detail. Furthermore, a categorization is made by dividing FSL methods into three categories (metric-based, optimization-based, and transfer learning approaches) and considering hybrid approaches. Special attention is given to episodic training and meta-learning approaches that provide rapid adaptation to new classes with minimal examples. Furthermore, the integration of explainable artificial intelligence (XAI) and its real-time application capabilities are discussed. Important issues such as domain shift, class imbalance, and high dimensionality are discussed. Recent refinements such as task-level learning, data augmentation, and multimodal integration are examined. Finally, a coherent framework is suggested for further studies and practical FSL applications in the context of RS. As a result, it provides a more comprehensive perspective than previous reviews. This review aimed to guide future research in the integration of FSL with RS applications by analyzing the existing literature and pointing out important research gaps. en_US
dc.identifier.doi 10.1111/tgis.70176
dc.identifier.issn 1361-1682
dc.identifier.issn 1467-9671
dc.identifier.uri https://doi.org/10.1111/tgis.70176
dc.identifier.uri https://hdl.handle.net/123456789/12882
dc.language.iso en en_US
dc.publisher Wiley en_US
dc.relation.ispartof Transactions in GIS en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Artificial Intelligence en_US
dc.subject Data Scarcity en_US
dc.subject Few-Shot Learning en_US
dc.subject Meta-Learning en_US
dc.subject Remote Sensing en_US
dc.subject Xai en_US
dc.title Advancing Remote Sensing with Few-Shot Learning: A Comprehensive Review of Methods, Challenges, and Future Directions en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.description.department Konya Technical University en_US
gdc.description.departmenttemp [Aslan, Muhammet Fatih; Sabanci, Kadir] Karamanoglu Mehmetbey Univ, Dept Elect & Elect Engn, Karaman, Turkiye; [Durdu, Akif] Konya Tech Univ, Dept Elect & Elect Engn, Konya, Turkiye; [Kaousar, Rehana] Shandong Univ Technol, Sch Agr Engn & Food Sci, Zibo, Peoples R China en_US
gdc.description.issue 8 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.volume 29 en_US
gdc.description.woscitationindex Social Science Citation Index
gdc.description.wosquality Q1
gdc.identifier.openalex W7117516759
gdc.identifier.wos WOS:001650058700001
gdc.index.type WoS
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.popularity 2.7494755E-9
gdc.openalex.collaboration International
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.9
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.scopuscites 0
gdc.virtual.author Durdu, Akif
gdc.wos.citedcount 0
relation.isAuthorOfPublication 230d3f36-663e-4fae-8cdd-46940c9bafea
relation.isAuthorOfPublication.latestForDiscovery 230d3f36-663e-4fae-8cdd-46940c9bafea

Files