Deep Learning-Based Brain Hemorrhage Detection in Ct Reports
| dc.contributor.author | Bayrak, Gıyaseddin | |
| dc.contributor.author | Toprak, M. Şakir | |
| dc.contributor.author | Ganiz, Murat Can | |
| dc.contributor.author | Kodaz, Halife | |
| dc.contributor.author | Koç, Ural | |
| dc.date.accessioned | 2022-10-08T20:48:57Z | |
| dc.date.available | 2022-10-08T20:48:57Z | |
| dc.date.issued | 2022 | |
| dc.description | Norwegian Centre for E-health Research | en_US |
| dc.description | 32nd Medical Informatics Europe Conference, MIE 2022 -- 27 May 2022 through 30 May 2022 -- 179490 | en_US |
| dc.description.abstract | Radiology reports can potentially be used to detect critical cases that need immediate attention from physicians. We focus on detecting Brain Hemorrhage from Computed Tomography (CT) reports. We train a deep learning classifier and observe the effect of using different pre-trained word representations along with domain-specific fine-tuning. We have several contributions. Firstly, we report the results of a large-scale classification model for brain hemorrhage detection from Turkish radiology reports. Second, we show the effect of fine-tuning pre-trained language models using domain-specific data on the performance. We conclude that deep learning models can be used for detecting brain Hemorrhage with reasonable accuracy and fine-tuning language models using domain-specific data to improve classification performance. © 2022 European Federation for Medical Informatics (EFMI) and IOS Press. | en_US |
| dc.identifier.doi | 10.3233/SHTI220609 | |
| dc.identifier.isbn | 9781643682846 | |
| dc.identifier.issn | 0926-9630 | |
| dc.identifier.scopus | 2-s2.0-85131106697 | |
| dc.identifier.uri | https://doi.org/10.3233/SHTI220609 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.13091/2910 | |
| dc.language.iso | en | en_US |
| dc.publisher | IOS Press BV | en_US |
| dc.relation.ispartof | Studies in Health Technology and Informatics | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Brain Hemorrhage | en_US |
| dc.subject | Deep Learning | en_US |
| dc.subject | NLP | en_US |
| dc.subject | Radiology | en_US |
| dc.subject | Computational linguistics | en_US |
| dc.subject | Computerized tomography | en_US |
| dc.subject | Deep learning | en_US |
| dc.subject | Medical informatics | en_US |
| dc.subject | Natural language processing systems | en_US |
| dc.subject | Radiation | en_US |
| dc.subject | Brain hemorrhage | en_US |
| dc.subject | Critical case | en_US |
| dc.subject | Deep learning | en_US |
| dc.subject | Domain specific | en_US |
| dc.subject | Fine tuning | en_US |
| dc.subject | Haemorrage | en_US |
| dc.subject | Hemorrhage detection | en_US |
| dc.subject | Language model | en_US |
| dc.subject | Learning classifiers | en_US |
| dc.subject | Radiology reports | en_US |
| dc.subject | Radiology | en_US |
| dc.subject | brain hemorrhage | en_US |
| dc.subject | human | en_US |
| dc.subject | natural language processing | en_US |
| dc.subject | research | en_US |
| dc.subject | x-ray computed tomography | en_US |
| dc.subject | Deep Learning | en_US |
| dc.subject | Humans | en_US |
| dc.subject | Intracranial Hemorrhages | en_US |
| dc.subject | Natural Language Processing | en_US |
| dc.subject | Research Report | en_US |
| dc.subject | Tomography, X-Ray Computed | en_US |
| dc.title | Deep Learning-Based Brain Hemorrhage Detection in Ct Reports | en_US |
| dc.type | Conference Object | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Toprak, M. Şakir | |
| gdc.author.institutional | Kodaz, Halife | |
| gdc.author.scopusid | 57720752500 | |
| gdc.author.scopusid | 57720752600 | |
| gdc.author.scopusid | 22034124700 | |
| gdc.author.scopusid | 8945093700 | |
| gdc.author.scopusid | 57192644774 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::conference output | |
| gdc.description.department | Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
| gdc.description.endpage | 867 | en_US |
| gdc.description.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q4 | |
| gdc.description.startpage | 866 | en_US |
| gdc.description.volume | 294 | en_US |
| gdc.description.wosquality | N/A | |
| gdc.identifier.openalex | W4281571952 | |
| gdc.identifier.pmid | 35612228 | |
| gdc.index.type | Scopus | |
| gdc.index.type | PubMed | |
| gdc.oaire.accesstype | HYBRID | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 2.0 | |
| gdc.oaire.influence | 2.6222395E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Research Report | |
| gdc.oaire.keywords | Deep Learning | |
| gdc.oaire.keywords | Humans | |
| gdc.oaire.keywords | Tomography, X-Ray Computed | |
| gdc.oaire.keywords | Intracranial Hemorrhages | |
| gdc.oaire.keywords | Natural Language Processing | |
| gdc.oaire.popularity | 3.3558727E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.openalex.collaboration | National | |
| gdc.openalex.fwci | 1.45759226 | |
| gdc.openalex.normalizedpercentile | 0.82 | |
| gdc.opencitations.count | 2 | |
| gdc.plumx.mendeley | 10 | |
| gdc.plumx.scopuscites | 4 | |
| gdc.scopus.citedcount | 4 | |
| gdc.virtual.author | Kodaz, Halife | |
| relation.isAuthorOfPublication | 8a1e6584-7869-499d-81a8-a73a0c428829 | |
| relation.isAuthorOfPublication.latestForDiscovery | 8a1e6584-7869-499d-81a8-a73a0c428829 |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- SHTI-294-SHTI220609.pdf
- Size:
- 150.83 KB
- Format:
- Adobe Portable Document Format
