Deep Learning-Based Brain Hemorrhage Detection in Ct Reports

dc.contributor.author Bayrak, Gıyaseddin
dc.contributor.author Toprak, M. Şakir
dc.contributor.author Ganiz, Murat Can
dc.contributor.author Kodaz, Halife
dc.contributor.author Koç, Ural
dc.date.accessioned 2022-10-08T20:48:57Z
dc.date.available 2022-10-08T20:48:57Z
dc.date.issued 2022
dc.description Norwegian Centre for E-health Research en_US
dc.description 32nd Medical Informatics Europe Conference, MIE 2022 -- 27 May 2022 through 30 May 2022 -- 179490 en_US
dc.description.abstract Radiology reports can potentially be used to detect critical cases that need immediate attention from physicians. We focus on detecting Brain Hemorrhage from Computed Tomography (CT) reports. We train a deep learning classifier and observe the effect of using different pre-trained word representations along with domain-specific fine-tuning. We have several contributions. Firstly, we report the results of a large-scale classification model for brain hemorrhage detection from Turkish radiology reports. Second, we show the effect of fine-tuning pre-trained language models using domain-specific data on the performance. We conclude that deep learning models can be used for detecting brain Hemorrhage with reasonable accuracy and fine-tuning language models using domain-specific data to improve classification performance. © 2022 European Federation for Medical Informatics (EFMI) and IOS Press. en_US
dc.identifier.doi 10.3233/SHTI220609
dc.identifier.isbn 9781643682846
dc.identifier.issn 0926-9630
dc.identifier.scopus 2-s2.0-85131106697
dc.identifier.uri https://doi.org/10.3233/SHTI220609
dc.identifier.uri https://hdl.handle.net/20.500.13091/2910
dc.language.iso en en_US
dc.publisher IOS Press BV en_US
dc.relation.ispartof Studies in Health Technology and Informatics en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Brain Hemorrhage en_US
dc.subject Deep Learning en_US
dc.subject NLP en_US
dc.subject Radiology en_US
dc.subject Computational linguistics en_US
dc.subject Computerized tomography en_US
dc.subject Deep learning en_US
dc.subject Medical informatics en_US
dc.subject Natural language processing systems en_US
dc.subject Radiation en_US
dc.subject Brain hemorrhage en_US
dc.subject Critical case en_US
dc.subject Deep learning en_US
dc.subject Domain specific en_US
dc.subject Fine tuning en_US
dc.subject Haemorrage en_US
dc.subject Hemorrhage detection en_US
dc.subject Language model en_US
dc.subject Learning classifiers en_US
dc.subject Radiology reports en_US
dc.subject Radiology en_US
dc.subject brain hemorrhage en_US
dc.subject human en_US
dc.subject natural language processing en_US
dc.subject research en_US
dc.subject x-ray computed tomography en_US
dc.subject Deep Learning en_US
dc.subject Humans en_US
dc.subject Intracranial Hemorrhages en_US
dc.subject Natural Language Processing en_US
dc.subject Research Report en_US
dc.subject Tomography, X-Ray Computed en_US
dc.title Deep Learning-Based Brain Hemorrhage Detection in Ct Reports en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.institutional Toprak, M. Şakir
gdc.author.institutional Kodaz, Halife
gdc.author.scopusid 57720752500
gdc.author.scopusid 57720752600
gdc.author.scopusid 22034124700
gdc.author.scopusid 8945093700
gdc.author.scopusid 57192644774
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::conference output
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
gdc.description.endpage 867 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q4
gdc.description.startpage 866 en_US
gdc.description.volume 294 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W4281571952
gdc.identifier.pmid 35612228
gdc.index.type Scopus
gdc.index.type PubMed
gdc.oaire.accesstype HYBRID
gdc.oaire.diamondjournal false
gdc.oaire.impulse 2.0
gdc.oaire.influence 2.6222395E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Research Report
gdc.oaire.keywords Deep Learning
gdc.oaire.keywords Humans
gdc.oaire.keywords Tomography, X-Ray Computed
gdc.oaire.keywords Intracranial Hemorrhages
gdc.oaire.keywords Natural Language Processing
gdc.oaire.popularity 3.3558727E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 1.45759226
gdc.openalex.normalizedpercentile 0.82
gdc.opencitations.count 2
gdc.plumx.mendeley 10
gdc.plumx.scopuscites 4
gdc.scopus.citedcount 4
gdc.virtual.author Kodaz, Halife
relation.isAuthorOfPublication 8a1e6584-7869-499d-81a8-a73a0c428829
relation.isAuthorOfPublication.latestForDiscovery 8a1e6584-7869-499d-81a8-a73a0c428829

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
SHTI-294-SHTI220609.pdf
Size:
150.83 KB
Format:
Adobe Portable Document Format