Comparison of the Effects of Mel Coefficients and Spectrogram Images Via Deep Learning in Emotion Classification

dc.contributor.author Demircan, Semiye
dc.contributor.author Örnek, Humar Kahramanlı
dc.date.accessioned 2021-12-13T10:26:43Z
dc.date.available 2021-12-13T10:26:43Z
dc.date.issued 2020
dc.description.abstract In the present paper, an approach was developed for emotion recognition from speech data using deep learning algorithms, a problem that has gained importance in recent years. Feature extraction manually and feature selection steps were more important in traditional methods for speech emotion recognition. In spite of this, deep learning algorithms were applied to data without any data reduction. The study implemented the triple emotion groups of EmoDB emotion data: Boredom, Neutral, and Sadness-BNS; and Anger, Happiness, and Fear-AHF. Firstly, the spectrogram images resulting from the signal data after preprocessing were classified using AlexNET. Secondly, the results formed from the MelFrequency Cepstrum Coefficients (MFCC) extracted by feature extraction methods to Deep Neural Networks (DNN) were compared. The importance and necessity of using manual feature extraction in deep learning was investigated, which remains a very important part of emotion recognition. The experimental results show that emotion recognition through the implementation of the AlexNet architecture to the spectrogram images was more discriminative than that through the implementation of DNN to manually extracted features. en_US
dc.description.sponsorship Konya Technical University Scientific Research Projects; Selcuk University Scientific Research ProjectsSelcuk University; TUBITAKTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) en_US
dc.description.sponsorship S. Demircan thanks to Konya Technical University Scientific Research Projects for the support of this study. H. K. Ornek thanks to Selcuk University Scientific Research Projects for the support of this study the authors also thank TUBITAK for their support of this study. en_US
dc.identifier.doi 10.18280/ts.370107
dc.identifier.issn 0765-0019
dc.identifier.issn 1958-5608
dc.identifier.scopus 2-s2.0-85082476744
dc.identifier.uri https://doi.org/10.18280/ts.370107
dc.identifier.uri https://hdl.handle.net/20.500.13091/426
dc.language.iso en en_US
dc.publisher INT INFORMATION & ENGINEERING TECHNOLOGY ASSOC en_US
dc.relation.ispartof TRAITEMENT DU SIGNAL en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Speech Emotion Recognition en_US
dc.subject Deep Neural Network (Dnn) en_US
dc.subject Convolutional Neural Network (Cnn) en_US
dc.subject Deep Learning Algorithm en_US
dc.subject Mel-Frequency Cepstrum Coefficients (Mfcc) en_US
dc.subject Neural-Network en_US
dc.subject Speech en_US
dc.subject Recognition en_US
dc.subject Architectures en_US
dc.title Comparison of the Effects of Mel Coefficients and Spectrogram Images Via Deep Learning in Emotion Classification en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 36522532700
gdc.author.scopusid 57215968345
gdc.author.wosid ORNEK, Humar Kahramanli/X-2596-2018
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
gdc.description.endpage 57 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 51 en_US
gdc.description.volume 37 en_US
gdc.description.wosquality Q4
gdc.identifier.openalex W3013295773
gdc.identifier.wos WOS:000524986200007
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype BRONZE
gdc.oaire.diamondjournal false
gdc.oaire.impulse 10.0
gdc.oaire.influence 3.4828684E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 1.11063185E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 1.25960781
gdc.openalex.normalizedpercentile 0.81
gdc.opencitations.count 12
gdc.plumx.mendeley 27
gdc.plumx.scopuscites 13
gdc.scopus.citedcount 13
gdc.virtual.author Demircan, Semiye
gdc.wos.citedcount 9
relation.isAuthorOfPublication faac224a-8ae6-4b7c-8600-95d2e58cfe0e
relation.isAuthorOfPublication.latestForDiscovery faac224a-8ae6-4b7c-8600-95d2e58cfe0e

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
37.01_07.pdf
Size:
1.09 MB
Format:
Adobe Portable Document Format