Convolutional Neural Network-Based Apple Images Classification and Image Quality Measurement by Light Colors Using the Color-Balancing Approach

dc.contributor.author Büyükarıkan, Birkan
dc.contributor.author Ülker, Erkan
dc.date.accessioned 2023-05-30T20:00:35Z
dc.date.available 2023-05-30T20:00:35Z
dc.date.issued 2023
dc.description.abstract The appearance of an object is affected by the color and quality of the light on the surface and the location of the lighting source. Color-balancing methods can solve the problems caused by light changes. Color-balancing models increase the visibility of the image by changing color and clarity. The study aims to examine the images of physiological disorders in apples' classification performances of images in different light colors with color-balancing models with pre-trained CNN models. Physiological disorders were classified with 0.949 accuracies in the ResNet50V2 model and sharpness data set in the green light color. With the proposed approaches, there was an increase in performance compared to the original data set. The best success in all light colors is in the sharpness data set type. In addition, the quality of the images was measured using MSE, PSNR, and SSIM. PSNR increased in the warm and cold white sharpness data set type and green light CLAHE data set type. Finally, experimental studies have shown that color balancing significantly affects classification success. en_US
dc.description.sponsorship Scientific Research Project at Konya Technical University, Konya, Turkey [201113006] en_US
dc.description.sponsorship This work was supported by the Scientific Research Project at Konya Technical University, Konya, Turkey (No. 201113006). en_US
dc.identifier.doi 10.1007/s00530-023-01084-z
dc.identifier.issn 0942-4962
dc.identifier.issn 1432-1882
dc.identifier.scopus 2-s2.0-85151288670
dc.identifier.uri https://doi.org/10.1007/s00530-023-01084-z
dc.identifier.uri https://hdl.handle.net/20.500.13091/3950
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof Multimedia Systems en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Convolutional neural network en_US
dc.subject Color balancing en_US
dc.subject Classification en_US
dc.subject Light colors en_US
dc.subject Image quality en_US
dc.subject Constancy en_US
dc.title Convolutional Neural Network-Based Apple Images Classification and Image Quality Measurement by Light Colors Using the Color-Balancing Approach en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Buyukarikan, Birkan/0000-0002-9703-9678
gdc.author.institutional
gdc.author.scopusid 56971435700
gdc.author.scopusid 23393979800
gdc.author.wosid Buyukarikan, Birkan/F-4244-2019
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department KTÜN en_US
gdc.description.departmenttemp [Buyukarikan, Birkan] Selcuk Univ, Sarayonu Vocat High Sch, Dept Comp Technol, Konya, Turkiye; [Ulker, Erkan] Konya Tech Univ, Fac Engn & Nat Sci, Dept Comp Engn, Konya, Turkiye en_US
gdc.description.endpage 1661
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 1651
gdc.description.volume 29
gdc.description.wosquality Q2
gdc.identifier.openalex W4361286564
gdc.identifier.wos WOS:000960265100002
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 8.0
gdc.oaire.influence 2.8807052E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 8.211468E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 2.11344186
gdc.openalex.normalizedpercentile 0.92
gdc.opencitations.count 5
gdc.plumx.mendeley 10
gdc.plumx.scopuscites 7
gdc.scopus.citedcount 7
gdc.virtual.author Ülker, Erkan
gdc.wos.citedcount 5
relation.isAuthorOfPublication ecd5c807-37b2-4c20-a42b-133bc166cbc0
relation.isAuthorOfPublication.latestForDiscovery ecd5c807-37b2-4c20-a42b-133bc166cbc0

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
s00530-023-01084-z.pdf
Size:
1.27 MB
Format:
Adobe Portable Document Format