Chaotic Artificial Algae Algorithm for Solving Global Optimization With Real-World Space Trajectory Design Problems

dc.contributor.author Turkoğlu, Bahaeddin
dc.contributor.author Uymaz, Sait Ali
dc.contributor.author Kaya, Ersin
dc.date.accessioned 2024-08-10T13:37:26Z
dc.date.available 2024-08-10T13:37:26Z
dc.date.issued 2025
dc.description.abstract The artificial algae algorithm (AAA) is a recently introduced metaheuristic algorithm inspired by the behavior and characteristics of microalgae. Like other metaheuristic algorithms, AAA faces challenges such as local optima and premature convergence. Various strategies to address these issues and enhance the performance of the algorithm have been proposed in the literature. These include levy flight, local search, variable search, intelligent search, multi-agent systems, and quantum behaviors. This paper introduces chaos theory as a strategy to improve AAA's performance. Chaotic maps are utilized to effectively balance exploration and exploitation, prevent premature convergence, and avoid local minima. Ten popular chaotic maps are employed to enhance AAA's performance, resulting in the chaotic artificial algae algorithm (CAAA). CAAA's performance is evaluated on thirty benchmark test functions, including unimodal, multimodal, and fixed dimension problems. The algorithm is also tested on three classical engineering problems and eight space trajectory design problems at the European Space Agency. A statistical analysis using the Friedman and Wilcoxon tests confirms that CAA demonstrates successful performance in optimization problems. en_US
dc.description.sponsorship Scientific and Technological Research Council of Turkiye (TUB ITAK) en_US
dc.description.sponsorship Open access funding provided by the Scientific and Technological Research Council of Turkiye (TUB ITAK). en_US
dc.identifier.doi 10.1007/s13369-024-09222-z
dc.identifier.issn 2193-567X
dc.identifier.issn 2191-4281
dc.identifier.scopus 2-s2.0-85197402335
dc.identifier.uri https://doi.org/10.1007/s13369-024-09222-z
dc.identifier.uri https://hdl.handle.net/20.500.13091/6049
dc.language.iso en en_US
dc.publisher Springer Heidelberg en_US
dc.relation.ispartof Arabian Journal For Science and Engineering en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Artificial algae algorithm en_US
dc.subject Chaotic maps en_US
dc.subject Global optimization en_US
dc.subject Engineering design en_US
dc.subject Space trajectory mission en_US
dc.subject Firefly Algorithm en_US
dc.title Chaotic Artificial Algae Algorithm for Solving Global Optimization With Real-World Space Trajectory Design Problems en_US
dc.type Article en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Turkoglu, Bahaeddin/0000-0003-0255-8422
gdc.author.institutional
gdc.author.scopusid 57218160917
gdc.author.scopusid 56572779600
gdc.author.scopusid 36348487700
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department KTÜN en_US
gdc.description.departmenttemp [Turkoglu, Bahaeddin] Ankara Univ, Fac Engn, Dept Artificial Intelligence & Data Engn, Ankara, Turkiye; [Uymaz, Sait Ali; Kaya, Ersin] Konya Tech Univ, Fac Engn & Nat Sci, Dept Comp Engn, Konya, Turkiye en_US
gdc.description.endpage 1306
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 1279
gdc.description.volume 50
gdc.description.wosquality Q2
gdc.identifier.openalex W4400260374
gdc.identifier.wos WOS:001260520300001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype HYBRID
gdc.oaire.diamondjournal false
gdc.oaire.impulse 13.0
gdc.oaire.influence 2.9826253E-9
gdc.oaire.isgreen true
gdc.oaire.popularity 1.2171058E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0103 physical sciences
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration National
gdc.openalex.fwci 7.66534259
gdc.openalex.normalizedpercentile 0.96
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.crossrefcites 1
gdc.plumx.mendeley 7
gdc.plumx.scopuscites 12
gdc.scopus.citedcount 12
gdc.virtual.author Kaya, Ersin
gdc.virtual.author Uymaz, Sait Ali
gdc.wos.citedcount 11
relation.isAuthorOfPublication 6b459b99-eed9-45fb-b42f-50fbb4ee7090
relation.isAuthorOfPublication 83ffad2c-51a1-41f6-8ede-6d95ca8e9ac0
relation.isAuthorOfPublication.latestForDiscovery 6b459b99-eed9-45fb-b42f-50fbb4ee7090

Files