Finger Vein Recognition Based on Multi-Features Fusion

dc.contributor.author Titrek, Fatih
dc.contributor.author Baykan, Ömer K.
dc.date.accessioned 2023-05-31T20:19:34Z
dc.date.available 2023-05-31T20:19:34Z
dc.date.issued 2023
dc.description.abstract Biometric Recognition Systems allow individuals to be automatically authenticated or identified by using their unique characteristics. Finger vein (FV), widely used for this purpose, has a crucial place among biometric systems because of its advantages, which are user-friendliness, ability to detect living tissue, high reliability, low system cost, and less area requirement in installation. It has a wide usage area, especially in places where personal safety is at the forefront. In this study, we examine the effect of the Horizontal and Vertical Total Proportion (HVTP) feature extraction algorithm on the success rate when the fusion technique is applied. Homomorphic Filter (HF) and Perona-Malik Anisotropic Diffusion (PMAD) are used to remove the noise and light scattering issue in the FV databases, and Gray Level Run Length Matrices (GLRLM), Gray Level Co-occurrence Matrices (GLCM), Segmentation-based Fractal Texture Analysis (SFTA), Horizontal Total Proportion (HTP), and Vertical Total Proportion (VTP) methods are applied to describe texture features. The fusion of multiple features instead of using only one type of feature can improve the accuracy of FV recognition systems. The novelty of the study is the fusion of HTP and VTP with the GLRLM, GLCM, and SFTA features by using Yang finger vein databases (Database_1) and MMCBNU_6000 (Database_2). Experimental results reveal that the HTP and VTP significantly improved the classification success in these FV image databases. The best success rate achieved in the Ensemble classifier is 99.7% using Database_1 and 97.6% using Database_2. en_US
dc.identifier.doi 10.18280/ts.400109
dc.identifier.issn 0765-0019
dc.identifier.issn 1958-5608
dc.identifier.scopus 2-s2.0-85152189002
dc.identifier.uri https://doi.org/10.18280/ts.400109
dc.identifier.uri https://hdl.handle.net/20.500.13091/4248
dc.language.iso en en_US
dc.publisher Int Information & Engineering Technology Assoc en_US
dc.relation.ispartof Traitement Du Signal en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject biometrics en_US
dc.subject fusion en_US
dc.subject feature extraction en_US
dc.subject finger vein en_US
dc.subject GLRLM en_US
dc.subject GLCM en_US
dc.subject HVTP en_US
dc.subject SFTA en_US
dc.subject Anisotropic Diffusion en_US
dc.subject Palmprint Recognition en_US
dc.subject Feature-Extraction en_US
dc.subject Roi Localization en_US
dc.subject Enhancement en_US
dc.subject Gabor en_US
dc.subject Network en_US
dc.subject Filter en_US
dc.title Finger Vein Recognition Based on Multi-Features Fusion en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional
gdc.author.scopusid 57218489194
gdc.author.scopusid 23090480800
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department KTÜN en_US
gdc.description.departmenttemp [Titrek, Fatih; Baykan, oemer K.] Konya Tech Univ, Fac Engn & Nat Sci, Dept Comp Engn, TR-42250 Konya, Turkiye en_US
gdc.description.endpage 113 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararasi Hakemli Dergi - Kurum Ögretim Elemani en_US
gdc.description.scopusquality N/A
gdc.description.startpage 101 en_US
gdc.description.volume 40 en_US
gdc.description.wosquality Q4
gdc.identifier.openalex W4328054402
gdc.identifier.wos WOS:000957612200009
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.6986822E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.8902198E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 0.53686999
gdc.openalex.normalizedpercentile 0.57
gdc.opencitations.count 1
gdc.plumx.mendeley 5
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.virtual.author Titrek, Fatih
gdc.virtual.author Baykan, Ömer Kaan
gdc.wos.citedcount 0
relation.isAuthorOfPublication 515bde6b-b781-4c73-9178-9d8265037032
relation.isAuthorOfPublication aea7aa1f-27e5-46d6-9fb7-317283404e6b
relation.isAuthorOfPublication.latestForDiscovery 515bde6b-b781-4c73-9178-9d8265037032

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ts_40.01_09.pdf
Size:
1.23 MB
Format:
Adobe Portable Document Format