Evaluating the Performance of ANN and ANFIS Models for Spatial Precipitation Prediction in Complex Terrain: a Case Study in Central Anatolia

dc.contributor.author Husrevoglu, Mustafa
dc.contributor.author Gundogdu, Ismail Bulent
dc.date.accessioned 2025-08-10T17:20:00Z
dc.date.available 2025-08-10T17:20:00Z
dc.date.issued 2025
dc.description.abstract Accurate spatial precipitation prediction is essential for hydrological modelling and climate risk management, particularly in regions with complex topography. This study evaluates and compares the performance of machine learning (ML) models, specifically Artificial Neural Networks (ANN) and the Adaptive Neuro-Fuzzy Inference System (ANFIS), with traditional geostatistical methods, including Kriging, Co-Kriging (COK), and Regression Kriging (RK), in Central Anatolia, T & uuml;rkiye. The models were trained and tested using data from 193 meteorological stations and 17 environmental and spatial predictors, such as elevation, humidity, pressure, and distance to the sea. The best-performing ANN model achieved a test Root Mean Square Error (RMSE) of 9.6 mm, Percent Bias (PBIAS) of - 1.45%, Nash-Sutcliffe Efficiency (NSE) of 0.577, and Willmott's Index of Agreement (WI) of 0.869. ANFIS also outperformed the geostatistical methods, with its best configuration yielding a test RMSE of 12.7 mm and an extrapolation error of 15.6 mm at the Erciyes Mountain Point (EMP). In contrast, Kriging-based methods exhibited large errors at high-altitude locations, particularly at EMP, where precipitation reached 85 mm but was underestimated by more than 60 mm. These findings demonstrate that ML models can effectively capture nonlinear spatial patterns and provide superior extrapolation performance in ungauged, mountainous regions. A ML-based framework is proposed, emphasizing local error evaluation and point-specific modelling to improve the reliability of spatial precipitation mapping. en_US
dc.identifier.doi 10.1007/s00704-025-05637-2
dc.identifier.issn 0177-798X
dc.identifier.issn 1434-4483
dc.identifier.scopus 2-s2.0-105010003751
dc.identifier.uri https://doi.org/10.1007/s00704-025-05637-2
dc.identifier.uri https://hdl.handle.net/20.500.13091/10597
dc.language.iso en en_US
dc.publisher Springer Wien en_US
dc.relation.ispartof Theoretical and Applied Climatology
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject ANFIS en_US
dc.subject ANN en_US
dc.subject Central Anatolia en_US
dc.subject Geostatistics en_US
dc.subject Machine Learning en_US
dc.subject Spatial Interpolation en_US
dc.title Evaluating the Performance of ANN and ANFIS Models for Spatial Precipitation Prediction in Complex Terrain: a Case Study in Central Anatolia en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 59488956600
gdc.author.scopusid 59981277100
gdc.author.wosid Hüsrevoğlu, Mustafa/Acc-5085-2022
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Konya Technical University en_US
gdc.description.departmenttemp [Husrevoglu, Mustafa] Nigde Omer Halisdemir Univ, Fac Engn, Dept Geomat Engn, Nigde, Turkiye; [Gundogdu, Ismail Bulent] Konya Tech Univ, Fac Engn & Nat Sci, Dept Geomat Engn, Konya, Turkiye en_US
gdc.description.issue 7 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 156 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q3
gdc.identifier.openalex W4411918052
gdc.identifier.wos WOS:001527502500009
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.532519E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 3.5011982E-9
gdc.oaire.publicfunded false
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.32
gdc.opencitations.count 0
gdc.plumx.mendeley 6
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 0
gdc.virtual.author Gündoğdu, İsmail Bülent
gdc.virtual.author Hüsrevoğlu, Mustafa
gdc.wos.citedcount 0
relation.isAuthorOfPublication 08a4c56f-02ac-4ce1-afee-bd957539bdd5
relation.isAuthorOfPublication e6e51760-ac40-43be-b62b-fd06d82c5998
relation.isAuthorOfPublication.latestForDiscovery 08a4c56f-02ac-4ce1-afee-bd957539bdd5

Files