Evaluating Machine Learning and Deep Learning Algorithms for Financial Anomaly Detection: A Comparative Study

dc.contributor.author Akusta, A.
dc.contributor.author Salur, M.N.
dc.contributor.author Şahbaz, A.
dc.date.accessioned 2025-12-24T21:39:37Z
dc.date.available 2025-12-24T21:39:37Z
dc.date.issued 2025
dc.description.abstract This paper aims to provide a comprehensive comparative analysis of various algorithms for anomaly detection in financial time series data, specifically focusing on Ford Otosan stock, the BIST100 index, and the USD/TRY exchange rate. The study evaluates the performance of algorithms, including Isolation Forest, Single-Class Support Vector Machines, Local Outlier Factor, DBSCAN, KMeans, and Autoencoders, utilizing metrics such as accuracy, precision, recall, and F1 score. These insights contribute to the existing body of knowledge by offering a detailed comparison of machine learning and deep learning techniques, providing valuable implications for risk management and investment strategies. The paper acknowledges the study's limitations, including the relatively short analysis period and the specific set of algorithms used. The findings reveal that KMeans is the most effective model for anomaly detection, demonstrating high accuracy and sensitivity. Isolation Forest and Autoencoders also perform well but have certain limitations. © 2025, Statistical Economic and Social Research and. All rights reserved. en_US
dc.identifier.doi 10.5281/zenodo.17707775
dc.identifier.issn 1308-7800
dc.identifier.scopus 2-s2.0-105023534087
dc.identifier.uri https://doi.org/10.5281/zenodo.17707775
dc.identifier.uri https://hdl.handle.net/123456789/12755
dc.language.iso en en_US
dc.publisher Statistical Economic and Social Research and en_US
dc.relation.ispartof Journal of Economic Cooperation and Development en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Anomaly Detection en_US
dc.subject BIST100 Index en_US
dc.subject Deep Learning en_US
dc.subject Machine Learning en_US
dc.title Evaluating Machine Learning and Deep Learning Algorithms for Financial Anomaly Detection: A Comparative Study en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 59550863200
gdc.author.scopusid 59905052100
gdc.author.scopusid 56380585900
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Konya Technical University en_US
gdc.description.departmenttemp [Akusta] Ahmet, Konya Technical University, Konya, Konya, Turkey; [Salur] Mehmet Nuri, Faculty of Political Science, Necmettin Erbakan Üniversitesi, Meram, Konya, Turkey; [Şahbaz] Ahmet, Faculty of Political Science, Necmettin Erbakan Üniversitesi, Meram, Konya, Turkey en_US
gdc.description.endpage 112 en_US
gdc.description.issue 4 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q4
gdc.description.startpage 85 en_US
gdc.description.volume 46 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W7106744692
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Anomaly detection, Machine learning, Deep learning, BIST100 index
gdc.oaire.popularity 2.7494755E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.85
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.virtual.author Akusta, Ahmet
relation.isAuthorOfPublication 0dae0322-7e0e-488f-8e26-c17e1dfe513e
relation.isAuthorOfPublication.latestForDiscovery 0dae0322-7e0e-488f-8e26-c17e1dfe513e

Files