A Binary Sparrow Search Algorithm for Feature Selection on Classification of X-Ray Security Images

No Thumbnail Available

Date

2024

Authors

Babalik, A.
Babadag, A.

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Ltd

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Top 10%
Influence
Average
Popularity
Top 10%

Research Projects

Journal Issue

Abstract

In today's world, especially in public places, strict security measures are being implemented. Among these measures, the most common is the inspection of the contents of people's belongings, such as purses, knapsacks, and suitcases, through X-ray imaging to detect prohibited items. However, this process is typically performed manually by security personnel. It is an exhausting task that demands continuous attention and concentration, making it prone to errors. Additionally, the detection and classification of overlapping and occluded objects can be challenging. Therefore, automating this process can be highly beneficial for reducing errors and improving the overall efficiency. In this study, a framework consisting of three fundamental phases for the classification of prohibited objects was proposed. In the first phase, a deep neural network was trained using X-ray images to extract features. In the subsequent phase, features that best represent the object were selected. Feature selection helps eliminate redundant features, leading to the efficient use of memory, reduced computational costs, and improved classification accuracy owing to a decrease in the number of features. In the final phase, classification was performed using the selected features. In the first stage, a convolutional neural network model was utilized for feature extraction. In the second stage, the Sparrow Search Algorithm was binarized and proposed as the binISSA for feature selection. Feature selection was implemented using the proposed binISSA. In the final stage, classification was performed using the K-Nearest Neighbors (KNN) and Support Vector Machine (SVM) algorithms. The performances of the convolutional neural network and the proposed framework were compared. In addition, the performance of the proposed framework was compared with that of other state-of-the-art meta-heuristic algorithms. The proposed method increased the classification accuracy of the network from 0.9702 to 0.9763 using both the KNN and SVM (linear kernel) classifiers. The total number of features extracted using the deep neural network was 512. With the application of the proposed binISSA, average number of features were reduced to 25.33 using the KNN classifier and 32.70 using the SVM classifier. The results indicate a notable reduction in the extracted features from the convolutional neural network and an improvement in the classification accuracy. © 2024 Elsevier B.V.

Description

Keywords

Binary optimization, Feature selection, Transfer learning, X-ray security image classification, Classification (of information), Convolution, Convolutional neural networks, Deep neural networks, Feature Selection, Heuristic algorithms, Learning algorithms, Nearest neighbor search, Support vector machines, Binary optimization, Classification accuracy, Convolutional neural network, Features selection, Images classification, Nearest-neighbour, Performance, Search Algorithms, Transfer learning, X-ray security image classification, Image classification

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q1

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

Applied Soft Computing

Volume

158

Issue

Start Page

111546

End Page

PlumX Metrics
Citations

Scopus : 11

Captures

Mendeley Readers : 7

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
6.36189071

Sustainable Development Goals

4

QUALITY EDUCATION
QUALITY EDUCATION Logo

6

CLEAN WATER AND SANITATION
CLEAN WATER AND SANITATION Logo

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

12

RESPONSIBLE CONSUMPTION AND PRODUCTION
RESPONSIBLE CONSUMPTION AND PRODUCTION Logo

13

CLIMATE ACTION
CLIMATE ACTION Logo

14

LIFE BELOW WATER
LIFE BELOW WATER Logo

17

PARTNERSHIPS FOR THE GOALS
PARTNERSHIPS FOR THE GOALS Logo