A New Deep Learning Based End-To Pipeline for Hamstring Injury Detection in Thermal Images of Professional Football Player

dc.contributor.author Ergene, Mehmet Celalettin
dc.contributor.author Bayrak, Ahmet
dc.contributor.author Ceylan, Murat
dc.date.accessioned 2024-08-10T13:37:25Z
dc.date.available 2024-08-10T13:37:25Z
dc.date.issued 2025
dc.description.abstract Football clubs use various methods such as thermal imaging which is a non-invasive and faster method to detect injuries and increase the success rate of the football club by reducing the injury rate. Studies have proven that with thermal imaging it is possible to detect inflammation caused by an injury. Therefore, it is possible to detect potential injury with infrared thermography. One of the biggest handicaps of injury detection with thermal imaging is that it is open to subjective interpretation, there are many points that can be missed, and it takes time to analyse them one by one. In order to avoid this problem, to increase the success of injury detection, a deep learning supported pipeline has been designed in this study to detect injuries from thermal images. In this pipeline, the hamstring muscle region from the football player thermal images was segmented using U-Net architecture. After that in order to detect injuries, segmented muscle region is classified by using Densenet, Resnet, VGG, Efficientnet architectures variations and feature pyramid added at the end of these architectures. Among the architectures used for classification, the EfficientnetB0 and EfficientnetB1+feature pyramid architectures are the most successful, with accuracies of 83.9% and 81%, respectively. en_US
dc.description.sponsorship This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. en_US
dc.identifier.doi 10.1080/17686733.2024.2364964
dc.identifier.issn 1768-6733
dc.identifier.issn 2116-7176
dc.identifier.scopus 2-s2.0-85197506565
dc.identifier.uri https://doi.org/10.1080/17686733.2024.2364964
dc.identifier.uri https://hdl.handle.net/20.500.13091/6037
dc.language.iso en en_US
dc.publisher Taylor & Francis Ltd en_US
dc.relation.ispartof Quantitative Infrared Thermography Journal en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Deep learning en_US
dc.subject muscle segmentation en_US
dc.subject injury detection en_US
dc.subject sports medicine en_US
dc.subject thermography en_US
dc.title A New Deep Learning Based End-To Pipeline for Hamstring Injury Detection in Thermal Images of Professional Football Player en_US
dc.type Article en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Ergene, Mehmet Celalettin/0000-0003-1167-146X
gdc.author.id Bayrak, Ahmet/0000-0001-7854-6407
gdc.author.institutional
gdc.author.scopusid 57193738202
gdc.author.scopusid 57197708927
gdc.author.scopusid 56276648900
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department KTÜN en_US
gdc.description.departmenttemp [Ergene, Mehmet Celalettin; Ceylan, Murat] Konya Tech Univ, Engn Fac, Dept Elect Elect Engn, Konya, Turkiye; [Bayrak, Ahmet] Selcuk Univ, Vocat Sch Hlth Sci, Konya, Turkiye; [Ceylan, Murat] AIVISIONTECH Elekt Yazilim AS, Konya, Turkiye en_US
gdc.description.endpage 265
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 248
gdc.description.volume 22
gdc.description.wosquality Q1
gdc.identifier.openalex W4400364187
gdc.identifier.wos WOS:001262788400001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 3.0
gdc.oaire.influence 2.6343363E-9
gdc.oaire.isgreen true
gdc.oaire.popularity 4.6360165E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0103 physical sciences
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration National
gdc.openalex.fwci 2.45722145
gdc.openalex.normalizedpercentile 0.83
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.mendeley 5
gdc.plumx.scopuscites 2
gdc.scopus.citedcount 2
gdc.virtual.author Ceylan, Murat
gdc.wos.citedcount 2
relation.isAuthorOfPublication 3ddb550c-8d12-4840-a8d4-172ab9dc9ced
relation.isAuthorOfPublication.latestForDiscovery 3ddb550c-8d12-4840-a8d4-172ab9dc9ced

Files