Gender Determination From Teeth Images Via Hybrid Feature Extraction Method

dc.contributor.author Uzbaş, Betül
dc.contributor.author Arslan, Ahmet
dc.contributor.author Kök, Hatice
dc.contributor.author Acılar, Ayşe Merve
dc.date.accessioned 2021-12-13T10:41:25Z
dc.date.available 2021-12-13T10:41:25Z
dc.date.issued 2020
dc.description International Conference on Artificial Intelligence and Applied Mathematics in Engineering (ICAIAME) -- APR 20-22, 2019 -- Antalya, TURKEY en_US
dc.description.abstract Teeth are a significant resource for determining the features of an unknown person, and gender is one of the important pieces of demographic information. For this reason, gender analysis from teeth is a current topic of research. Previous literature on gender determination have generally used values obtained through manual measurements of the teeth, gingiva, and lip area. However, such methods require extra effort and time. Furthermore, since sexual dimorphism varies among populations, it is necessary to know the optimum values for each population. This study uses a hybrid feature extraction method and a Support Vector Machine (SVM) for gender determination from teeth images. The study group was composed of 60 Turkish individuals (30 female, 30 male) between the ages of 19 and 27. Features were automatically extracted from the intraoral images through a hybrid method that combines two-dimensional Discrete Wavelet Transformation (DWT) and Principle Component Analysis (PCA). Classification was performed from these features through SVM. The system can be easily used on any population and can perform fast and low-cost gender determination without requiring any extra effort. en_US
dc.identifier.doi 10.1007/978-3-030-36178-5_34
dc.identifier.isbn 978-3-030-36178-5; 978-3-030-36177-8
dc.identifier.issn 2367-4512
dc.identifier.scopus 2-s2.0-85083427203
dc.identifier.uri https://doi.org/10.1007/978-3-030-36178-5_34
dc.identifier.uri https://hdl.handle.net/20.500.13091/1488
dc.language.iso en en_US
dc.publisher SPRINGER INTERNATIONAL PUBLISHING AG en_US
dc.relation.ispartof ARTIFICIAL INTELLIGENCE AND APPLIED MATHEMATICS IN ENGINEERING PROBLEMS en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Random Forest Algorithm en_US
dc.subject Dimensions en_US
dc.title Gender Determination From Teeth Images Via Hybrid Feature Extraction Method en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.scopusid 57201915831
gdc.author.scopusid 56919273700
gdc.author.scopusid 57188823625
gdc.author.scopusid 36450071700
gdc.author.wosid Uzbas, Betul/AAM-2345-2020
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.endpage 456 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q4
gdc.description.startpage 446 en_US
gdc.description.volume 43 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W2997824759
gdc.identifier.wos WOS:000678771000034
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 1.3503004E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.01
gdc.opencitations.count 0
gdc.plumx.mendeley 2
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 1
gdc.virtual.author Uzbaş, Betül
gdc.wos.citedcount 0
relation.isAuthorOfPublication b37a91b2-acda-4cb4-9cb2-12392200749f
relation.isAuthorOfPublication.latestForDiscovery b37a91b2-acda-4cb4-9cb2-12392200749f

Files