Debohid: a Differential Evolution Based Oversampling Approach for Highly Imbalanced Datasets

dc.contributor.author Kaya, Ersin
dc.contributor.author Korkmaz, Sedat
dc.contributor.author Şahman, Mehmet Akif
dc.contributor.author Çınar, Ahmet Cevahir
dc.date.accessioned 2021-12-13T10:30:01Z
dc.date.available 2021-12-13T10:30:01Z
dc.date.issued 2021
dc.description.abstract Class distribution of the samples in the dataset is one of the critical factors affecting the classification success. Classifiers trained with imbalanced datasets classify majority class samples more successfully than minority class samples. Oversampling, which is based on increasing the minority class samples, is a frequently used method to overcome the class imbalance. More than two decades, many oversampling methods are presented for the class imbalance problem. Differential Evolution is a metaheuristic algorithm that achieves successful results in a lot of domains. One of the main reasons for this success is that DE has an effective candidate individual generation mechanism. In this work, we propose a novel oversampling method based on a differential evolution algorithm for highly imbalanced datasets, and it is named as DEBOHID (A differential evolution based oversampling approach for highly imbalanced datasets). In order to show the success of DEBOHID, 44 highly imbalanced ratio datasets are used in experiments. The obtained results are compared with nine different state-of-art oversampling methods. In order to show the independence of the experimental results to classifier, Support Vector Machines (SVM), k-Nearest Neighbor (kNN), and Decision Tree (DT) are used as a classifier in the experiments. AUC and G Mean metrics are used for the performance measurements. The experimental results and statistical analyses have shown the triumph of the DEBOHID. en_US
dc.identifier.doi 10.1016/j.eswa.2020.114482
dc.identifier.issn 0957-4174
dc.identifier.issn 1873-6793
dc.identifier.scopus 2-s2.0-85098069105
dc.identifier.uri https://doi.org/10.1016/j.eswa.2020.114482
dc.identifier.uri https://hdl.handle.net/20.500.13091/809
dc.language.iso en en_US
dc.publisher PERGAMON-ELSEVIER SCIENCE LTD en_US
dc.relation.ispartof EXPERT SYSTEMS WITH APPLICATIONS en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Imbalanced data learning en_US
dc.subject Differential evolution en_US
dc.subject Oversampling en_US
dc.subject Class imbalance en_US
dc.title Debohid: a Differential Evolution Based Oversampling Approach for Highly Imbalanced Datasets en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Sahman, Mehmet Akif/0000-0002-1718-3777
gdc.author.scopusid 36348487700
gdc.author.scopusid 57200221456
gdc.author.scopusid 43361772800
gdc.author.scopusid 57207596277
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 114482
gdc.description.volume 169 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W3111007659
gdc.identifier.wos WOS:000623569100012
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 24.0
gdc.oaire.influence 4.036166E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.919989E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 3.67148871
gdc.openalex.normalizedpercentile 0.94
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 29
gdc.plumx.crossrefcites 37
gdc.plumx.facebookshareslikecount 1
gdc.plumx.mendeley 39
gdc.plumx.scopuscites 42
gdc.scopus.citedcount 41
gdc.virtual.author Korkmaz, Sedat
gdc.virtual.author Kaya, Ersin
gdc.wos.citedcount 36
relation.isAuthorOfPublication 3a35d7d4-4f08-416f-bbd9-546d6a050371
relation.isAuthorOfPublication 6b459b99-eed9-45fb-b42f-50fbb4ee7090
relation.isAuthorOfPublication.latestForDiscovery 3a35d7d4-4f08-416f-bbd9-546d6a050371

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1-s2.0-S0957417420311295-main.pdf
Size:
1.3 MB
Format:
Adobe Portable Document Format