3t2fts: a Novel Feature Transform Strategy To Classify 3d Mri Voxels and Its Application on Hgg/Lgg Classification

No Thumbnail Available

Date

2023

Authors

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI

Open Access Color

GOLD

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Top 10%
Influence
Average
Popularity
Top 10%

Research Projects

Journal Issue

Abstract

The distinction between high-grade glioma (HGG) and low-grade glioma (LGG) is generally performed with two-dimensional (2D) image analyses that constitute semi-automated tumor classification. However, a fully automated computer-aided diagnosis (CAD) can only be realized using an adaptive classification framework based on three-dimensional (3D) segmented tumors. In this paper, we handle the classification section of a fully automated CAD related to the aforementioned requirement. For this purpose, a 3D to 2D feature transform strategy (3t2FTS) is presented operating first-order statistics (FOS) in order to form the input data by considering every phase (T1, T2, T1c, and FLAIR) of information on 3D magnetic resonance imaging (3D MRI). Herein, the main aim is the transformation of 3D data analyses into 2D data analyses so as to applicate the information to be fed to the efficient deep learning methods. In other words, 2D identification (2D-ID) of 3D voxels is produced. In our experiments, eight transfer learning models (DenseNet201, InceptionResNetV2, InceptionV3, ResNet50, ResNet101, SqueezeNet, VGG19, and Xception) were evaluated to reveal the appropriate one for the output of 3t2FTS and to design the proposed framework categorizing the 210 HGG-75 LGG instances in the BraTS 2017/2018 challenge dataset. The hyperparameters of the models were examined in a comprehensive manner to reveal the highest performance of the models to be reached. In our trails, two-fold cross-validation was considered as the test method to assess system performance. Consequently, the highest performance was observed with the framework including the 3t2FTS and ResNet50 models by achieving 80% classification accuracy for the 3D-based classification of brain tumors.

Description

Keywords

convolutional neural network, deep learning, feature transform, first-order statistics, glioma, image classification, transfer learning, Ensemble, Network, TK7885-7895, Computer engineering. Computer hardware, glioma, convolutional neural network, deep learning, feature transform, convolutional neural network; deep learning; feature transform; first-order statistics; glioma; image classification; transfer learning, first-order statistics, image classification

Turkish CoHE Thesis Center URL

Fields of Science

03 medical and health sciences, 0302 clinical medicine, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology

Citation

WoS Q

Q1

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
2

Source

Machine Learning and Knowledge Extraction

Volume

5

Issue

2

Start Page

359

End Page

383
PlumX Metrics
Citations

Scopus : 6

Captures

Mendeley Readers : 10

SCOPUS™ Citations

6

checked on Feb 03, 2026

Web of Science™ Citations

3

checked on Feb 03, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
1.33365227

Sustainable Development Goals

SDG data is not available