Haycamj: a New Method To Uncover the Importance of Main Filter for Small Objects in Explainable Artificial Intelligence

dc.contributor.author Ornek, A.H.
dc.contributor.author Ceylan, M.
dc.date.accessioned 2024-04-20T13:05:50Z
dc.date.available 2024-04-20T13:05:50Z
dc.date.issued 2024
dc.description.abstract Visual XAI methods enable experts to reveal importance maps highlighting intended classes over input images. This research paper presents a novel approach to visual explainable artificial intelligence (XAI) for object detection in deep learning models. The study investigates the effectiveness of activation maps generated by five different methods, namely GradCAM, GradCAM++, EigenCAM, HayCAM, and a newly proposed method called "HayCAMJ", in detecting objects within images. The experiments were conducted on two datasets (Pascal VOC 2007 and Pascal VOC 2012) and three models (ResNet18, ResNet34, and MobileNet). Zero padding was applied to resize and center the objects due to the large objects in the images. The results show that HayCAMJ performs better than other XAI techniques in detecting small objects. This finding suggests that HayCAMJ has the potential to become a promising new approach for object detection in deep classification models. © The Author(s) 2024. en_US
dc.description.sponsorship Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK en_US
dc.identifier.doi 10.1007/s00521-024-09640-y
dc.identifier.issn 0941-0643
dc.identifier.issn 1433-3058
dc.identifier.scopus 2-s2.0-85188802782
dc.identifier.uri https://doi.org/10.1007/s00521-024-09640-y
dc.identifier.uri https://hdl.handle.net/20.500.13091/5407
dc.language.iso en en_US
dc.publisher Springer Science and Business Media Deutschland GmbH en_US
dc.relation.ispartof Neural Computing and Applications en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Class activation mapping en_US
dc.subject Deep learning en_US
dc.subject Explainable artificial intelligence en_US
dc.subject Visual explanation en_US
dc.subject Weakly supervised object detection en_US
dc.subject Chemical activation en_US
dc.subject Deep learning en_US
dc.subject Object recognition en_US
dc.subject Activation mapping en_US
dc.subject Class activation mapping en_US
dc.subject Deep learning en_US
dc.subject Explainable artificial intelligence en_US
dc.subject Importance map en_US
dc.subject Input image en_US
dc.subject Objects detection en_US
dc.subject Small objects en_US
dc.subject Visual explanation en_US
dc.subject Weakly supervised object detection en_US
dc.subject Object detection en_US
dc.title Haycamj: a New Method To Uncover the Importance of Main Filter for Small Objects in Explainable Artificial Intelligence en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional
gdc.author.scopusid 57210593918
gdc.author.scopusid 56276648900
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department KTÜN en_US
gdc.description.departmenttemp Ornek, A.H., Service Application Department, Huawei Türkiye R & amp;D Center, Umraniye, Istanbul, 34774, Turkey, Electrical and Electronics Engineering Department, Konya Technical University, Selcuklu, Konya, 42130, Turkey; Ceylan, M., Electrical and Electronics Engineering Department, Konya Technical University, Selcuklu, Konya, 42130, Turkey en_US
gdc.description.endpage 10798
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 10791
gdc.description.volume 36
gdc.description.wosquality Q2
gdc.identifier.openalex W4393232657
gdc.index.type Scopus
gdc.oaire.accesstype HYBRID
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.5403057E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 3.1545149E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 0.63877855
gdc.openalex.normalizedpercentile 0.66
gdc.opencitations.count 0
gdc.plumx.mendeley 4
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 1
gdc.virtual.author Ceylan, Murat
relation.isAuthorOfPublication 3ddb550c-8d12-4840-a8d4-172ab9dc9ced
relation.isAuthorOfPublication.latestForDiscovery 3ddb550c-8d12-4840-a8d4-172ab9dc9ced

Files